Что такое структура и текстура какими они бывают

Структура и текстура горных пород.

Внутреннее строение горной породы характеризуется структурой и текстурой.

Структура горных пород определяется размером, формой и характером срастания минералов, а также степенью кристалличности вещества.

Для магматических горных пород различают следующие типы структур:

Полнокристаллическая (порода состоит из кристаллических зерен минералов).

Скрытокристаллическая (зерна минералов настолько малы, что едва различимы в микроскоп).

Порфировая (в аморфной массе выделяются вкрапленности).

Для осадочных горных пород выделяют следующие виды структур (в соответствие с размером обломков):

· Мелкообломочные (алевритовые) от 0,1 до 0,01 мм.

Для определения абсолютного возраста горных пород используется несколько методов, каждый из них назван по типу радиоактивного распада:

свинцовый (в основе лежит радиоактивный распад урана и тория, дающих радиогенные изотопы свинца);

— калий-аргоновый (при распаде радиоактив­ного изотопа 40 К выделяется 12% 40 Аг и 88% 40 Са);

— гелиевый, базирующийся на выделении некоторыми химическими эле­ментами радиогенного гелия;

стронциевый, основанный на распаде рубидия и превращения его в стронций,

— рени­евый (при распаде выделяется радиогенный изотоп осмия) и т.д.

Перечисленные методы абсолютной геохронологии исполь­зуются для определения возраста древних отложений. Для определения возраста молодых образований пользуются ра­диоуглеродным методом, основывающимся на распаде радио­активного углерода 14 С. Этот метод позволяет определять только возраст молодых отложений, образованных не ранее 20 тыс. лет назад. Период полураспада углерода ( 14 С в 14 N) равен 5700 годам.

Деление истории Земли на эры, периоды, эпохи, века. Стратиграфические и геохронологические подразделения геохронологической шкалы.

На основе изучения истории органического мира на Земле была разработана геохронологическая шкала. Подразделения шкалы соответствуют определенным стратиграфическим единицам, каж­дая из которых выделяется по комплексу ископаемых остатков, встречаемых в толщах горных пород. При этом в каждой едини­це выделяются руководящие ископаемые, которые жили в опреде­ленные отрезки геологической истории и являются определяю­щими для датирования возраста слоев горных пород.

Палеозойская группа подразделя­ется на шесть систем: кембрийскую, ордовикскую, силурийскую, девонскую, каменноугольную, пермскую. Они в свою очередь подразделяются на отделы: ниж­ний, средний и верхний (кембрийская, ордовикская девонская, каменноугольная) или нижний и верхний (силурийская и пермская).

Мезозойская группа делится на три системы: триасовую, юрскую и меловую, из которых триасовая и юрская имеют три отдела, а меловая — два (нижний и верхний).

Кайнозойская группа подразделя­ется на три системы: палеогеновую, неогеновую и антропогеновую (четвертич­ную). Палеоген имеет три отдела, неоген и антропоген — две. Каж­дая система на геологических документах выделяется специфи­ческой окраской, причем более древний отдел имеет более темный оттенок цвета.

Цвета и индексы, обозначающие возраст, являются унифици­рованными, чтобы геологи разных стран могли получать иден­тичную информацию о строении и возрасте слоев земной коры в различных частях планеты.

Структурная геология

Осадочная толща земной коры состоит из слоев (пластов) горных пород.

Слой (пласт) – это гео­логическое тело преимущественно однородного состава, ограничен­ное приблизительно параллельными поверхностями — подошвой и кровлей. Поверхность, ограничивающая пласт сверху, называ­ется кровлей, поверхность, ограничивающая его снизу — подошвой. Расстояние между кровлей и подошвой называют толщиной. Толщина пласта во много раз меньше его протяжен­ности.

Первичной формой залегания осадочных горных пород явля­ются горизонтальные слои. В результате тектонических дви­жений земной коры они могут быть наклонены, смяты в складки и разорваны, образуя при этом различные структурные формы.

Первоначальное горизонтальное залегание слоев называется ненарушенным. Отклонение от первоначального горизонтального залегания пластов называется нарушением или дислокацией. Нарушение может быть без разрыва сплошности пласта и с разрывом. Нарушение без разрыва сплошности пласта называется пликативной дислокацией. Среди пликативных дислокаций выделяют следующие формы: моноклинали, складки и флексуры. Нарушение с разрывом сплошности пласта называется дизъюнктивной дислокацией. Основными формами разрывных (дизъюнктивных) дислокаций являются сбросы, взбросы, горсты, грабены надвиги, сдвиги.

image010Если пласт залегает наклонно, то он характеризуется ис­тинной, горизонтальной и вертикальной толщинами. Истинная толщина — это длина перпендикуляра, восстановленного из лю­бой точки кровли пласта до его подошвы. Горизонтальная тол­щина — это расстояние по горизонтали от любой точки кровли до подошвы пласта.

image011

Вертикальная толщина — это расстояние по вертикали от любой точки кровли до подошвы пласта (рисунок 1).

Положение пласта в пространстве определяются его элементами залегания. К элементам залегания пласта относятся:

1) Азимут простирания;

Прежде чем охарактеризовать элементы залегания, ознакомимся с такими понятиями, как линия простирания и линия падения пласта, а также угол падения пласта.

Линия простирания – это линия на плоскости пласта, которая получается от пересечения пласта (или его мысленного продолжения) с горизонтом.

Линия падения – линия, перпендикулярная к линии простирания и направленная по падению пласта.

image012image013

Угол падения – угол, образованный плоскостью пласта с горизонтальной плоскостью. Он замеряется между линией падения и её проекцией на горизонтальную плоскость.

Азимут простирания – угол, образуемый линией простирания и географическим меридианом.

Азимут падения – угол, образуемый проекцией линии падения на горизонтальную плоскость и географическим меридианом.

Направление падения пласта и направление простирания пласта всегда взаимно перпендикулярны.

Элементы залегания измеряют горным компасом, который для этой цели более пригоден, чем обычный компас.

1. Пликативные и дизъюнктивные дислокации.

a) Пликативные дислокации.

Под действием пластических деформаций возникает нарушенное залегание пластов земной коры без разрыва их сплошности. Такие формы нарушений принято называть пликативными дислокациями.

Среди пликативных дислокаций выделяют следующие формы: моноклинали, складки и флексуры. Наиболее распространённой формой являются складки.

image015

image016

Если пластические деформации горизонтально залегающих пластов осадочных пород проявились в виде их одностороннего наклона, то такая форма нарушения или дислокации называется моноклиналью (наклонное залегание). Моноклиналь наиболее простая форма пликативных дислокаций (рисунок 4). В зависимости от величины угла наклона пластов различают моноклинали слабонаклонные (угол наклона до 15 градусов), пологие (16-30 градусов), сильнонаклонные (30-75 градусов), поставленные на голову (80-90 градусов).

Складки – волнообразные изгибы пластов земной коры без разрыва сплошности. Они бывают антиклинальные и синклинальные.

Антиклинальная складка (антиклиналь) – характеризуется тем, что перегиб слоев выпуклостью обращен кверху. В центральной части – ядре – расположены более древние породы, вокруг них – молодые. С антиклинальными складками связано залегание залежей нефти и газа.

Синклинальная складка (синклиналь) выпуклой частью обращена книзу. В ядрах синклиналей залегают более молодые породы, а вокруг них, по мере удаления от ядра – более древние (рисунок ).

image018

image019

image021image022

image024

image025

2. Классификация по соотношению осей.

image027image029

Рисунок 10 – Морфологические типы Рисунок 11 – Схематический разрез

а – брахиантиклинальная складка, б – купол.

Своеобразными разновидностями антиклинальных складок являются диапировые складки. Их образование связано с присутствием в ядрах этих складок пластичных пород, как-то: глины, соли, гипса, которые протыкают (приподнимают) вышележащие слои. Происходит это по тому, что на сводах, где мощность пластов меньше, давление слабее, чем на крыльях. В диапировых складках, вследствие протыкания свода пластичной массой, пласты на своде приобретают более крутое падение, чем на крыльях и бывают осложнены разрывными нарушениями.

С пластами окружающими соляные купола могут быть связаны промышленные скопления нефти и газа, например, в Прикаспийской нефтегазоносной провинции.

Складки платформенных и геосинклинальных областей. Образование большинства платформенных складок связано с верти­кальньпии тектоническими, дифференцированными по скорости и знаку движениями блоков фундамента по образовавшимся в нем разломам. Эти движения охватывают не только фундамент, но покрывающий его осадочный чехол. Тектонические движения служат причиной перерывов в осадконакоплении и размывов, которые фиксируются в осадочном чехле платформенных складок, (рис. 12, а). Однако, эти перерывы характеризуются очень малыми углами несогласий, называемых платформенными несогласиями. Каждое несогласие является отражением тектонической фазы в формировании платформ

Флексуры – представляют собой коленообразный или ступенеобразный перегиб слоёв или пластов. На месте перегиба пластов их мощность обычно уменьшается, они становятся тоньше, и здесь возникают разрывы. Части флексуры, расположенные по обе стороны перегиба, называются крыльями (смыкающее-оставшееся на месте и опущенное крыло).

image031

Рисунок 14 – Флексура

Вертикальное смещение крыльев флексуры (амплитуда смещения) может достигать нескольких десятков и даже сотен метров. Флексуру нередко рассматривают как структуру, переходную к разрывным дислокациям. Зачастую они служат отражением в осадочном чехле разрывных нарушений фундамента.

b) Дизъюнктивные дислокации (разрывные нарушения)

Разрывные тектонические движения приводят к разрыву сплошности пластов горных пород; образовавшиеся вследствие этого нарушения получили название дизъюнктивных дислокаций. Различают два вида разрывных дислокаций; без смещения и со смещением.

К разрывным дислокациям без смещения относятся тектонические трещины. Они различаются по ширине (микротрещины – едва заметные трещины; макротрещины имеют в ширину от нескольких миллиметров до нескольких метров), по длине (иногда протяженность трещин достигает десятков километров), по глубине, форме (прямолинейные, дугообразные, кольцеобразные) и т.д. Кроме трещин тектонического происхождения существуют трещины нетектонического (экзогенного) происхождения, которые по внешним признакам мало чем отличаются от тектонических трещин.

Основными формами разрывных дислокаций со смещением являются сбросы, взбросы, горсты, грабены надвиги, сдвиги. В разрывных дислокациях различают следующие элементы: плоскость разрыва, или сместитель, крылья (два крыла) и амплитуду смещения.

Сместитель – плоскость, по которой происходит смещение. Углы наклона сместителя могут изменяться в широких пределах – от нескольких градусов до 80-90°.

Крылья – толщи пород, расположенные по обе стороны сместителя. При наклонном положении сместителя крыло, которое располагается над ним, называется висячим, а расположенное под ним – лежачим.

Амплитуда смещения – величина относительного перемещения пластов. Различают амплитуду смещения истинную, вертикальную и горизонтальную.

Наиболее характерной формой разрывных дислокаций с перемещением пластов является сброс – нарушение, у которого плоскость разрыва (сместитель) наклонена в сторону висячего крыла. Если же сместитель уходит под висячее крыло, образуется взброс.

Сбросом называется разрывное нарушение, у которого висячее крыло относительно лежачего смещено вниз (рисунок ). Скважины, пересекающие сброс, фиксируют выпадение части пластов из разреза.

Взбросом называется разрывное нарушение, у которого висячее крыло относительно лежачего смещено вверх, что в разрезе скважин фиксируется повторением одних и тех же пластов. У взбросов угол наклона сместителя всегда больше 60 градусов.

image032

Рисунок 15 – Схемы сброса (а) и взброса (б), к1- зона зияния, к2- зона перекрытия; f-f – сместитель.

В случае вертикального (или близкого к нему) положения сместителя становится трудно определить, имеем ли мы дело со сбросом или взбросом; в таких случаях крыло, занимающее более высокое положение, именуют обычно поднятым, а более низкое – опущенным.

Перемещения с разрывом в горизонтальном направлении приводят к образованию сдвигов. Нередко сбросы и сдвиги проявляются совместно, образуя сбросо-сдвиги.

image034 image036

Рисунок 16 – Надвиг(1), шарьяж (2)

Надвиг-это дислокация с разрывом пластов и надвиганием одного крыла на другое по горизонтальной или пологой по отношению к горизонту плоскости (в сбросах перемещение происходит по более крутой, ближе к вертикальной плоскости).

Надвиг с большим горизонтальным перемещением называется шарьяжем. В шарьяже висячее крыло перемещается от своих корней иногда на многие километры, даже десятки и сотни километров.

Сбросовые нарушения часто проявляются в виде систем сбросов и взбросов. При параллельном их расположении образуются грабены и горсты.

Грабен – опустившийся вдоль линий разломов участок земной коры. Горст – соответственно поднявшийся участок земной коры вдоль линии разломов. Несколько параллельных ступенчато расположенных грабенов образуют сложный грабен. Грабены и горсты слагают нередко обширные участки земной коры. Так, в грабенах лежат великие африканские озёра (Ньяса, Танганьика, Альберта, Рудольфа), Красное море, оз. Байкал. В грабене расположена долина реки Рейн, окружённая горстовыми горами Шварцвальд и Вогезы.

image038

иметь представление:об условиях нефтегазонакопления; о научно-технических проблемах и перспективах развития геологоразведочных работ на нефть и газ;

знать:основы геологии нефти и газа;

уметь:типы ловушек, резервуаров, залежей нефти и газа;

Особенность современного и будущего этапов развития сырьевой базы нефтяной и газовой промышленности состоит в том, что заканчивается эра «дешевой» нефти, т.е. нефти, сконцентрированной в гигантских месторождениях с хорошими геологическими и технико-экономическими характеристиками, которые обеспечивали высокие и устойчивые темпы добычи нефти.

Разведанность начальных потенциальных ресурсов России составляет по нефти 41%, по газу – 32%. Все это позволяет рассчитывать на открытие новых месторождений в Западной Сибири, Восточной Сибири, на севере европейской части страны, в Прикаспийской впадине и акваториях арктических и дальневосточных морей. Не исчерпали своих возможностей и старые нефтедобывающие районы Тимано-Печоры, Волго-Урала, Предкавказья и др.

· Нефть и природный газ

Что такое порода- коллектор? Какими свойствами она обладает?

Породы-коллекторы характеризуются коллекторскими свойствами – пористостью и проницаемостью.

Трещины — пустоты, образовавшиеся в результате раз­рушения сплошности породы, как правило, под действием тектонических движений.

Каверны — пустоты значительного размера, образовавшиеся в результате выщелачивания горной породы. Тип пустотного пространства, обусловленный происхождени­ем породы, во многом определяет ее физические свойства, по­этому он положен в основу наиболее часто используемой клас­сификации пород-коллекторов (табл. 2).

Таблица 2- Классификация коллекторов нефти и газа

Источник

Что такое структура и текстура какими они бывают

ГОРНЫЕ ПОРОДЫ И ИХ КЛАССИФИКАЦИЯ

Они представляют собой закономерные сочетания или механические смеси различных по составу минеральных зе­ рен, кристаллических или аморфных. Наряду с минеральны­ ми зернами могут присутствовать и органические остатки. К горным породам принято относить встречающиеся в земной коре смеси жидких минеральных веществ органического и неорганического происхождения.

Минералы, на которых приходится основная часть объе­ ма горных пород и определяющие их свойства, называются породообразующими.

Минералы, присутствующие в горных породах в незна­ чительных количествах в качестве примесей называют акцес­сорными.

Структурой называют особенность строения, опреде­ ляемая состоянием минерального вещества (кристаллическое, аморфное, обломочное) и размером кристаллических зерен или обломков. Структура может быть полнокристаллической, стекловатой, аморфной, и др.

Текстура горных пород определяется, как совокупность признаков, обусловленных ориентировкой и взаимным рас­ положением составных частей. Она может быть плотной или пористой, однородной или ориентированной (слоистая, слан­ цеватая и др.).

По указанным особенностям строения и происхождению выделяют около 1000 видов пород. Часть горных пород назы­ вают рудой.

Поскольку состав, строение и условия залегания горных пород зависят от механизмов образования, для их классифи­кации применяют генетический признак.

По происхождению все горные породы делятся на три основных типа: магматические (изверженные), осадочные и метаморфические. По месту образования и действующему фактору типы пород делятся на классы:

Каждый класс по особенностям состава и строения де­ лится на генетические виды горных пород.

Приведенную классификацию всей совокупности горных пород можно представить в виде следующей схемы (табл. 4)

image002

Горные породы могут образоваться под влиянием не од­ ного, а двух и более факторов, что вызывает затруднения при их определении и отнесении к тому или иному классу. С уче­ том этого в некоторых классификациях выделяют самостоя­ тельную группу вулканогенно-обломочных пород. Кроме то­ го, между осадочными и магматическими породами могут быть переходные виды, что обычно оговаривается при описа­нии пород. Несмотря на эти трудности, в большинстве случа­ ев удастся идентифицировать породы по типам и классам при описании и анализе.

1) интрузивные, или глубинные, образуются при засты­вании магмы, внедрившейся в земную кору, на глубинах 2- 3 км и более;

2) эффузивные, или излившиеся, связанные с застывани­ ем излившейся на поверхность лавы при вулканических про­ цессах;

3) жильные, образованные при остывании магмы в про­ тяженных в двух направлениях трещинах и полостях обычно над крупными интрузивными телами.

Породы каждой группы отличаются между собой по струк­ туре и текстуре ввиду различий в условиях застывания магмы (рис. 12, 13).

image004

Рис. 12. Виды структур магматических пород:

1 – кристаллическая; 2 – равномернозернистая; 3 – стекловатая;

4 – порфировая; 5 – порфировидная.

image006

Рис. 13. Текстуры магматических пород:

1 – массивная; 2 – сланцеватая; 3 – миндалевидная; 5 – флюидальная.

Интрузивным породам свойственны полно кристалличе­ ская разнозернистая структура и плотная массивная текстура, обусловленные следующими причинами:

1) медленное застывание магмы в течение миллионов лет в глубоких слоях земной коры;

2) в магме сохраняются газы и пары (до 12% объема), способствующие лучшему росту кристаллов;

3) высокое давление вышележащих слоев, обеспечи вающих создание плотных текстур.

Сходные условия складываются и при образовании жильных пород.

Для эффузивных пород характерны стекловатая и скрытокристаллическая мелкозернистая структуры ввиду относи­ тельно быстрого застывания излившейся на поверхность ла­ вы, лишенный летучих компонентов (газы, пар).

Только эффузивным породам свойственна пористая и пу­ зыристая текстура, обусловленная выделением газов из за­ стывающей лавы

Магматические горные породы классифицируются также по химическому составу, прежде всего по содержанию в них кремнекислоты ( SiO 2 ), как в свободном виде (кварц), так и в составе других силикатных минералов, входящих в породу.

В зависимости от процентного содержания кремнекисло­ ты магматические породы делятся на кислые (>65%), средние (65-52%), основные (52-45%) и ультраосновные (менее 45%).

Схема классификации изверженных пород приведена в таблице 5, а индивидуальная характеристика видов пород да­ ется в «Определителе горных пород» (см. «Практикум по гео­ логии»).

Классификация наиболее распространенных магматических

image008

Каждая из четырех групп горных пород характеризуется соотношением кремнекислоты и оснований, а также опреде­ ленным набором преобладающих светло- и темно- окрашенных минералов.

В средних породах количество кремнезема равно количе­ ству оснований, поэтому в них светлые (полевой шпат, пла­ гиоклазы) и темные (роговая обманка, биотит) минералы на­ ходятся примерно в равных количествах, что придает породе светло-серую или серую окраску.

В основных породах кремнекислоты меньше, чем осно­ ваний, поэтому эти породы состоят из темноцветных минера­лов бедных окисью кремния (роговая обманка, Лабрадор, ав­гит), что придает породе темную окраску.

В ультраосновных породах очень мало кремнекислоты и светлоокрашенных минералов, породы состоят из темно- окрашенных минералов (оливин до 80%, пироксены), что придает им темно-зеленую окраску вплоть до черного.

Осадкообразование заключается в отложении в конечных водоемах стока (моря, океаны, озера), сносимых с материков продуктов разрушения горных пород. В зависимости от того, каким путем происходит осаждение (механическое, коагуля­ ция коллоидных растворов, кристаллизация из насыщенных растворов, при участии живых организмов и др.) выделяют механические, химические, биохимические процессы и соот­ветствующие им осадки.

Диагенетические процессы охватывают все явления фи­ зико-химического преобразования свежеотложенных осадков под влиянием уплотнения, обезвоживания (дегидратация), раскристаллизации коллоидных осадков, цементации и т.п. Результатом этих процессов является окаменение осадков (литификация) и образование осадочных горных пород.

Вся совокупность процессов осадкообразования от ста­ дии выветривания до диагенеза получила наименование ли­тогенеза или литогенезиса (камнеобразование).

image010

Рис. 14. Примеры косой (а) и перекрестной (б) слоистости в речных отложениях (по Л.Б. Рухину)

Терригенные осадочные породы делятся на рыхлые (не­сцементированные) и плотные, окаменевшие (сцементиро­ ванные). Рыхлые обломочные образования служат исходным веществом, из которых в результате диагенеза, т.е. уплотне­ния, обезвоживания, цементации образуются плотные, каме нистые горные породы. Поэтому окаменелые горные породы наследуют основные особенности состава, структуры ( форма, размер обломков и др.) и текстуры (слоистость) исходного вещества Цементирующим веществом при диагенезе осадков может быть известковый, кремнистый, глинистый, желези­ стый и др. Встречается и сложный цемент, состоящий из двух и более цементирующих веществ.

В соответствии с размерами обломков выделяются сле­ дующие виды рыхлых образований и их сцементированные (окаменелые) аналоги: крупнообломочные, среднеобломоч ные и мелкообломочные (табл. 6).

При цементации скоплений этих обломков возникают соответствующие им окаменелые горные породы, валунный конгломерат (брекчия), галечный или щебнистый конгломе­ рат, гравелит.

Грубослоистые толщи конгломератов и брекчий образу­ ются в предгорных и горных областях, где в соответствующее время происходили значительные вертикальные движения земной коры. Распространены на склонах горных хребтов, в том числе и в Дагестане.

Классификация обломочных осадочных пород.

image012

Толщи алевролитов мощностью в сотни метров среди других осадочных пород и являются продуктом осаждения терригенного материала на дне древних морей. Алевролиты широко распространены в горном Дагестане, особенно в юж ных районах. В северных районах горного Дагестана алевро­ литы часто вскрываются в речных долинах под толщей пес­ чаников и известняков.

Хемогенные горные породы образуют большую группу пород, возникшую в результате осаждения растворов в кри­сталлической или аморфной форме в водных бассейнах. В зависимости от условий осаждения и химического состава выделяют следующие виды хемогенных пород: карбонатные, кремнистые, галоидные и фосфатные.

Известняки образуются на дне теплых морей в результа­ те совместного осаждения илоподобной карбонатной взвеси и остатков известковых скелетов организмов.

Для характеристики компонентов, составляющих менее 50% породы, к названию известняков добавляется соответст­вующее прилагательное: песчанистый, доломитовый, крем­ нистый и т.д.

Доломиты состоят в основном из минерала доломита с примесью в различных количествах кальцита, кварца, халце­ дона, магнезита и др. Залегают доломиты как и известняки в виде мощных слоев, непрерывно прослеживаясь на сотни ки­лометров. В таких толщах доломиты переслаиваются с песча­никами, известняками, мергелем и др., что говорит о близких или сходных условиях их происхождения.

Образуются доломиты в результате химического осажде­ ния из воды в озерах и морских бассейнах повышенной соле­ ности в условиях сухого и жаркого климата.

Залегают мергели в виде слоев вперемежку со слоями других карбонатных пород, глинами и песчаниками. Обра­зуется в результате одновременного осаждения карбонатного и глинистого материала в морских, лагунных и озерных бас­ сейнах нормальной солености на относительно небольших расстояниях от берегов (присутствие глинистого вещества)

Карбонатные породы широко используются в строитель­ стве (цемент, строительный камень и др.), в металлургии, бу­ мажной промышленности и т д.

В группу кремнистых входят осадочные породы, состоя­щие в основном из минералов кремнезема, кремни и кремни стые сланцы, диатомиты, яшмы и др. Залегают эти породы в виде протяженных пластов, слоев, линз или конкреций среди других пород.

Группу фосфатных образуют осадочные породы, в кото­ рых содержание P 2 O 5 не менее 8-10% в форме фосфата каль­ ция. При большом разнообразии состава и свойств по услови­ ям залегания и образования выделяют два типа горных пород и месторождений фосфоритов: пластовые и конкреционные.

Фосфатные конкреции располагаются обычно в глини­ стых сланцах, мергелях послойно или цепочки желваков бо­гатых фосфором. Происхождение их также смешанное био­ химическое, связано с выносом фосфора с суши в морские бассейны, последующим растворением в воде, освоением морскими организмами и осаждением после их отмирания.

Органогенные горные породы. В эту группу отнесены горные породы, образовавшиеся полностью или существенно из остатков жизнедеятельности организмов. В зависимости от формы участия живых организмов всю группу пород можно подразделить на две подгруппы:

Каустобиолиты. Этим термином обозначается большая группа ископаемых горючих материалов органического про­ исхождения, т. е. продукты преобразования остатков расти тельных и животных организмов под длительным действием геолого-геохимических факторов. По условиям образования и составу каустобиолиты четко разделяются на две группы: 1) породы угольного ряда, представляющие собой окаменевшие остатки древней растительности и отличающиеся от рассеян­ных разностей органического вещества в осадках более высо­кими концентрациями органики (торфы, ископаемые угли, горючие сланцы); 2) породы нефтяного ряда, состоящие из вещества в жидком или газообразном состоянии и в отличие от первых, имеющие миграционную природу, т. е. их накопление происходило в результате концентрации разложивших­ ся остатков рассеянной органики в процессе миграции (нефть, асфальт, природный горючий газ и др.).

Образуются в процессе преобразования, перерождения (метаморфизма) ранее образовавшихся магматических и оса­ дочных пород под действием высокой температуры, давления и других процессов.

Метаморфические изменения заключаются в распаде первоначальных минералов в исходных породах и образова­ нии новых, более устойчивых минералов и пород, т. е. проис­ ходит перекристаллизация пород.

Различают следующие типы процессов метаморфизма:

3. Метасоматизм представляет собой сложный физико- химический процесс замещения минералов вмещающих по­ род новыми агрегатами минералов под воздействием высокой температуры, давления и при участии нагретых водных рас творов. Часто метасоматоз наблюдается вдоль магматических жил, Метасоматические породы занимают промежуточное положение между вмещающими и жильными горными поро­дами. Породы этого типа также имеют ограниченное распро­ странение, часто образуют т.н. скарны.

Основные отличительные особенности метаморфических пород следующие: присутствие специфических минералов, свойственных только этим породам (андалузит, силлиманит, серпентин, тальк, хлорит и др.); ярко выраженная параллель­ная текстура (сланцеватость, гнейсовидность).

Метаморфизм происходит на различных глубинах зем­ ной коры в интервале температур от 100 до 900°С под давле­ нием от 100 до 10 тыс. атм., которое создается весом выше­лежащих толщ горных пород, т. е. большей частью темпера­ тура и давление находятся в интервале надкритических зна чений. В процессах метаморфизма всегда принимают участие водные и паро-водяные растворы (гидротермы), содержащие углекислоту, щелочные металлы и другие летучие и хорошо растворимые минеральные вещества.

Метаморфические преобразования охватывают целые толщи, сложенные комплексом глинистых, песчаных и кар­ бонатных пород. Характер минералов и породообразования в них различен и связан с составом исходной породы.

Источник

Мир познаний
Добавить комментарий

Adblock
detector