- Сумма и разность чисел
- Что такое сумма, и как ее найти
- Как найти разность чисел
- Числа. Сложение чисел.
- Свойства суммы чисел.
- Сложение отрицательных чисел (чисел с разными знаками). Правила.
- Что такое сумма числа в математике
- Что такое сумма чисел (определение)
- Свойства суммы чисел
- Сложение чисел в столбик
- Что такое сумма чисел
- Определение суммы чисел
- Свойства суммы чисел
- Сумма (математика)
- Содержание
- Определенная сумма
- Свойства определённой суммы
- Примеры
- Неопределённая сумма
- Формула Ньютона-Лейбница
- Этимология
- Литература
- См. также
- Полезное
- Смотреть что такое «Сумма (математика)» в других словарях:
Сумма и разность чисел
Что такое сумма, и как ее найти
Чтобы наглядно показать ребенку, как сложить числа, возьмите конфеты или любые другие вещи. Покажите ребенку две конфеты, а затем прибавьте к этим конфетам еще две. Пусть ребенок посчитает и скажет, что теперь конфет оказалось четыре. Объясните ему, что он только что сложил эти числа, то есть прибавил к одному числу другое число и в конечном итоге получил сумму.
Немного сложнее объяснить сложение разрядных слагаемых, эта тема может быть непонятна ребенку. Итак, существует множество разрядов: единицы, десятки, тысячи. Возьмите, к примеру, число 2564. Если разложить его на разряды, то получится: 2564 = 2000 + 500 + 60 + 4. Чтобы прибавить к этому числу, например, число 305, воспользуйтесь сложением в столбик. При таком сложении нужно прибавлять одни разряды к другим, начиная с конца: единицы к единицам, десятки к десяткам, тысячи к тысячам. То есть, для начала складываем 4 и 5, затем 6 и 0, после 5 и 3, и в конце 2 и 0. В конечном итоге получаем число 2869.
Как найти разность чисел
Разность – результат вычитания одного числа из другого. В отличие от суммы, здесь мы не можем воспользоваться правилом «от перестановки слагаемых разность не меняется», так как в вычитании всегда есть уменьшаемое и вычитаемое. Чтобы найти вычитаемое и разность, для начала нужно разобраться с этими понятиями. Уменьшаемое – это то, из чего мы «вычитаем», то есть убираем, а вычитаемое – количество того, что мы у этого уменьшаемого вернем.
А что касается разрядных слагаемых, то здесь мы делаем то же самое, что и с суммой, только теперь не прибавляем, а вычитаем. Возьмем число 6845 и вычтем из него 4231. Для этого мы вычитаем один разряд из другого разряда, производя вычитание с конца: 5-1 = 4, 4-3 = 1, 8-2 = 6, 6-4 = 2. В ответе получим 2614.
Числа. Сложение чисел.
Сумма — итог складывания величин (чисел, функций, векторов, матриц и т.д.). Свойства для всякого случая – это свойства коммутативности, ассоциативности и дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение существует), т.е. выполнение соотношений:
В теории множеств суммой (или объединением) множеств является множество, в котором элементы – это все элементы слагаемых множеств, которое берутся без повторов.
Суммой s чисел будет итог складывания таких чисел:
. На примере, если складываем 2 числа a и b, то расписать можно так:
Свойства суммы чисел.
Основываясь на выше приведенных свойствах сложения натуральных чисел можно сделать вывод, что от перестановки мест слагаемых сумма не меняется.
Сложение отрицательных чисел (чисел с разными знаками). Правила.
Для сложения двух натуральных чисел чисел с разными знаками, нужно:
2) поставить перед результатом знак того слагаемого, у которого модуль больше.
Что такое сумма числа в математике
В то время когда мы с вами не задумываясь манипулируем операциями над числами, нам совсем невдомек, как же легко и подсознательно нам даются эти самые простые математические вычисления.
Однако для тех, кто только всего лишь учится, делает свои первые шаги в логике складывания, в голове порой происходит непонятная каша. Конечно, со времени все встанет на свои места, «каша сварится» и будет вполне себе! Однако чтобы это произошло быстрее, необходимо направить обучающихся, подсказать и рассказать им о процессах сложения, суммирования чисел.
Начнем вначале как всегда с определений
Что такое сумма чисел (определение)
Заметьте, что здесь указано не только правило сложения, где собственно все числа лишь относительные величины, но что более важно, есть наименование компонентов суммы (слагаемое, еще одно слагаемое и сама сумма)
Теперь приведем несколько примеров и правил сложения для разных чисел.
Пример Найти сумму чисел:
1) 12 и 15 2) 1,1;2,2;3,3 и 4,4
Можно плавно перейти к свойствам суммы чисел
Свойства суммы чисел
У суммы чисел есть 3 основных свойства
1. Коммутативность: n+m=m+n
2. Ассоциативность: (n+m)+k=n+(m+k)
На основании этих свойств можем заключить известную догму, что от перестановки мест слагаемых сумма не изменяется.
3. Дистрибутивность по отношению к умножению
На основании этого свойства можем заключить, что произведение числа и суммы чисел, это все равно как если бы число умножить на каждое число из суммы в отдельности и после сложить эти произведения.
Пример Найти сумму чисел удобным способом:
1) 16+17+14 ; 2) 34+22+16+18
Решение. По свойствам сложения имеем
Сложение чисел в столбик
При сложении больших чисел или десятичных дробей используется сложение в столбик.
Пример Найти сумму чисел удобным способом:
1) 1562+13827 ; 2) 34,71+356,161
Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:
1) 1562+13827=15389
2) 34,71+356,161=390,871
Сложение рациональных дробей производится по правилу
Побалуемся с сложением чисел!?
Цифра к которой будем прибавлять (слагаемое)
Цифра которую будем прибавлять (слагаемое)
Что такое сумма чисел
Определение суммы чисел
Задание. Найти сумму чисел:
Ответ.
Свойства суммы чисел
На основании этих свойств можем заключить, что от перестановки мест слагаемых сумма не изменяется.
Дистрибутивность по отношению к умножению
$$(n+m) \cdot k=n \cdot k+m \cdot k$$
Что такое сумма чисел не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Найти сумму чисел удобным способом:
Решение. По свойствам сложения имеем
При сложении больших чисел или десятичных дробей используется сложение в столбик.
Задание. Найти сумму чисел удобным способом:
Решение. Складываем эти числа в столбик, для этого запишем их друг под другом, разряд под разрядом. В случае десятичных дробей ориентируемся на то, чтобы запятая первого числа стояла под запятой второго. Далее складываем числа стоящие друг под другом, двигаясь справа на лево и записывая результата под чертой дроби. Если сумма чисел в одном столбце превышает десять, то количество десятков прибавляем к числам стоящим в следующем столбце слева от этого столбца:
Сложение рациональных дробей производится по правилу
Задание. Найти сумму чисел:
Решение. Вычислим первую сумму используя правило сложения рациональных чисел
Числитель и знаменатель полученной дроби можно сократить на 2, тогда в ответе получим
Для вычисления второй суммы, преобразуем сначала второе слагаемое в неправильную дробь, для этого умножим целую часть на знаменатель и прибавим полученное число к числителю. Далее применим правило сложение рациональных дробей
Выделим в полученной дроби целую часть, для этого разделим числитель на знаменатель с остатком. Полученное частное запишем в целую часть, а остаток от деления в числитель.
Сумма (математика)
Су́мма (лат. summa — итог, общее количество), результат сложения величин (чисел, функций, векторов, матриц и т. д. ). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:
В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.
Содержание
Определенная сумма
Это обозначение называют определённой (конечной) суммой по i от k до N.
Для удобства вместо иногда пишут
, где
— некоторое соотношение для
, таким образом
это конечная сумма всех
, где
Свойства определённой суммы
Примеры
3.
4.
5.
Неопределённая сумма
Неопределённой суммой по
называется такая функция
, обозначаемая
, что
.
Формула Ньютона-Лейбница
Если найдена неопределённая сумма , то
.
Этимология
Латинское слово summa переводится как «главный пункт», «сущность», «итог». С XV века слово начинает употребляться в современном смысле, появляется глагол «суммировать» (1489 год).
Это слово проникло во многие современные языки: сумма в русском, sum в английском, somme во французском.
Специальный символ для обозначения суммы (S) первым ввёл Эйлер в 1755 году. Как вариант, использовалась греческая буква Сигма Σ. Позднее ввиду связи понятий суммирования и интегрирования, S также использовали для обозначения операции интегрирования.
Литература
См. также
Полезное
Смотреть что такое «Сумма (математика)» в других словарях:
Сумма — Сумма: Сумма (математика) результат сложения. Сумма (перен., книжн.) (лат. summa) итог, общее количество. Примеры Денежная сумма. Сумма жанр научного или дидактического сочинения. Сумма российский холдинг. Сумма Ляхде … Википедия
Сумма ряда — Сумма числового ряда определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае что он расходится[1].… … Википедия
МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… … Философская энциклопедия
Математика в Древнем Египте — Данная статья часть обзора История математики. Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э. Древнейшие древнеегипетские математические тексты относятся к началу II… … Википедия
Математика Древнего Востока — История науки По тематике Математика Естественные науки … Википедия
МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера
Математика — I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия
Математика инков — Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия
Сложение (математика) — У этого термина существуют и другие значения, см. Сложение (значения). Сложение (прибавление) одна из основных операций (действий) в разных разделах математики, позволяющая объединить два объекта (в простейшем случае два числа). Более … Википедия
Ряд (математика) — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия