Что такое сумма квадратов цифр

Содержание
  1. Сумма квадратов всех целых чисел
  2. Формулы сокращенного умножения
  3. Рассмотрим примеры работы калькулятора
  4. Разложение на квадраты
  5. Гипотенуза 5-мерного тетраэдра
  6. Заключение
  7. Сумма квадратов
  8. Что такое Сумма квадратов?
  9. Формула суммы квадратов:
  10. Что вам говорит сумма квадратов?
  11. Как посчитать сумму квадратов
  12. Пример использования суммы квадратов
  13. Ключевые моменты
  14. Ограничения использования суммы квадратов
  15. Представление чисел суммой двух квадратов и эллиптические кривые
  16. Вычеты
  17. Чуть-чуть про эллиптические кривые
  18. Квадратичные вычеты и невычеты
  19. Доказательство
  20. Причём здесь криптография?
  21. Решение формулы суммы квадратов двух чисел
  22. Нумерология: никакого гадания, только теория чисел
  23. Введение
  24. Сумма цифр и цифровой корень
  25. Применение цифровой суммы
  26. Улучшение алгоритма вычисления цифрового корня
  27. Свойства цифрового корня
  28. Операция сложения
  29. Операция вычитания
  30. Операция умножения
  31. Операция возведения в степень
  32. Ещё визуализации
  33. Образование циклических чисел при помощи ведической площади и остатков от деления

Сумма квадратов всех целых чисел

Сумма квадратов чисел — математическое выражение, для которого не существует формулы сокращенного умножения. На практике иногда требуется быстро прикинуть сумму нескольких квадратов, однако без математических хитростей такое выражение подсчитать достаточно трудно.

Формулы сокращенного умножения

Для упрощения расчетов в математике используются специальные формулы сокращенного умножения, которые, по сути, представляют собой частные случаи бинома Ньютона. При помощи таких формул легко вручную подсчитать, например, квадрат суммы или разности вида:

(a ± b) 2 = a 2 ± 2ab + b 2

в учебниках по математике вы не найдете. Естественно, она есть для комплексных чисел, тех самых, с которыми мы знакомимся в университетском курсе математического анализа. Выглядит эта формула достаточно жутко:

где i – легендарная мнимая единица, которая рассчитывается как квадратный корень из минус единицы.

В школьных примерах продвинутые ребята негласно используют формулу, которая не входит в пантеон формул сокращенного умножения:

a 2 + b 2 = (a + b) 2 − 2ab.

Эта формула идеально подходит только для вычисления суммы квадратов двух целых чисел. Но что делать, если на практике требуется сложить сумму нескольких квадратов или рациональных чисел? Здесь на сцене появляется наша программа.

Наша программа позволяет сложить сколько угодно квадратов целых и рациональных чисел. Для вычислений вам потребуется ввести числа в ячейку, отделив их пробелом. Десятичные дроби записываются и с точкой, и с запятой. Рациональные числа записываются через / (слэш). Итак, вы можете подсчитать сумму нескольких квадратных чисел, но для чего это вообще нужно?

Рассмотрим примеры работы калькулятора

Разложение на квадраты

Зачем складывать квадраты целых чисел? Почему бы не складывать их кубы или 33-е степени? Эти вопросы встают перед каждым математиком, занимающимся теорией чисел. Разложение целых чисел на сумму двух квадратов — классическая задача теории чисел, за которой стоит исследование делимости. В целом задача эта обратна теме данной статьи: вопрос ставится таким образом, что математик должен вычислить, раскладывается ли данное число на сумму двух квадратов. Некоторые ученые идут дальше и пытаются раскладывать числа на суммы квадратов последовательных чисел. Мы же просто попробуем сложить некоторые квадраты и посмотрим, что получится в результате. Итак, введем в калькулятор следующие пары чисел:

Как видите, разные пары чисел дают один и тот же результат. Кроме того, сами числа 25 и 64 являются квадратами 5 и 8 соответственно. Магия теории чисел, которую трудно применить в каких-нибудь бытовых расчетах.

Гипотенуза 5-мерного тетраэдра

Представим еще менее реальную задачу. Пятимерный тетраэдр или 5-мерный симплекс — это обобщение треугольника для пятимерного пространства. Такие причудливые идеи используются в квантовой физике, теории относительности и барицентрическом исчислении, но для решения некоторых задач от вас не потребуется глубоких знаний высшей математики. К примеру, гипотенуза пятимерного тетраэдра рассчитывается по достаточно простой формуле:

где a, b, c, d – стороны симплекса.

Для решения такой задачки достаточно ввести четыре значения в форму онлайн калькулятора и вычислить квадратный корень из результата. Допустим, стороны симплекса в условных единицах имеют следующие значения: 1, 2.3, 3/5, 0,85. Введем этим данные в ячейку через пробел и получим 7,3725. Теперь вычислим квадратный корень и выясним, что гипотенуза пятимерного симплекса равна 2,715.

Заключение

Сумма квадратов нескольких чисел — нестандартная задача, которая вряд ли встретится в обычных бытовых расчетах, как-то вычисление диаметра дачного ограждения или площади пиццы. Для нетривиальных математических расчетов вам пригодится наша программа, которая быстро вычислит сумму квадратов сколько угодно большого количества целых и рациональных чисел.

Источник

Сумма квадратов

Что такое Сумма квадратов?

Сумма квадратов – это статистический метод, используемый в регрессионном анализе для определения разброса точек данных. В регрессионном анализе цель состоит в том, чтобы определить, насколько хорошо ряд данных может быть адаптирован к функции, которая может помочь объяснить, как был создан ряд данных. Сумма квадратов используется как математический способ найти функцию, которая лучше всего соответствует (меньше всего отличается) от данных.

Формула суммы квадратов:

Сумма квадратов также известна как вариация.

Что вам говорит сумма квадратов?

Допустим, цена закрытия Microsoft (MSFT) за последние пять дней составляла 74,01, 74,77, 73,94, 73,61 и 73,40 в долларах США. Сумма общих цен составляет 369,73 доллара, а средняя цена учебника, таким образом, будет 369,73 доллара / 5 = 73,95 доллара.

Сумма квадратов – это сумма квадратов вариации, где вариация определяется как разброс между каждым отдельным значением и средним значением. Чтобы определить сумму квадратов, расстояние между каждой точкой данных и линией наилучшего соответствия возводится в квадрат, а затем суммируется. Линия наилучшего соответствия минимизирует это значение.

Как посчитать сумму квадратов

Теперь вы можете понять, почему измерение называется суммой квадратов отклонений или для краткости суммой квадратов. Используя наш приведенный выше пример MSFT, сумму квадратов можно рассчитать как:

Добавление только суммы отклонений без возведения в квадрат приведет к числу, равному или близкому к нулю, поскольку отрицательные отклонения почти полностью компенсируют положительные отклонения. Чтобы получить более реалистичное число, необходимо возвести сумму отклонений в квадрат. Сумма квадратов всегда будет положительным числом, потому что квадрат любого числа, положительного или отрицательного, всегда положительный.

Пример использования суммы квадратов

Основываясь на результатах расчета MSFT, большая сумма квадратов указывает на то, что большинство значений дальше от среднего, и, следовательно, есть большая изменчивость в данных. Низкая сумма квадратов указывает на низкую изменчивость набора наблюдений.

В приведенном выше примере 1.0942 показывает, что колебания цены акций MSFT за последние пять дней очень низки, и инвесторы, желающие инвестировать в акции, характеризующиеся стабильностью цен и низкой волатильностью, могут выбрать MSFT.

Ключевые моменты

Ограничения использования суммы квадратов

Принятие инвестиционного решения о том, какие акции покупать, требует гораздо большего количества наблюдений, чем перечисленные здесь. Аналитику, возможно, придется работать с данными за годы, чтобы с большей уверенностью узнать, насколько высока или низка изменчивость актива. По мере того, как в набор добавляется больше точек данных, сумма квадратов становится больше, так как значения будут более разбросанными.

Существует два метода регрессионного анализа, в которых используется сумма квадратов: линейный метод наименьших квадратов и нелинейный метод наименьших квадратов. Метод наименьших квадратов относится к тому факту, что функция регрессии минимизирует сумму квадратов отклонения от фактических точек данных. Таким образом можно нарисовать функцию, которая статистически лучше всего подходит для данных. Обратите внимание, что функция регрессии может быть линейной (прямая линия) или нелинейной (кривая линия).

Источник

Представление чисел суммой двух квадратов и эллиптические кривые

Совсем легко понять, почему 3, 7, 11 и прочие числа, дающие при делении на 4 остаток 3, непредставимы в виде a 2 +b 2 : квадрат чётного числа всегда делится на 4, квадрат нечётного числа всегда даёт остаток 1 при делении на 4, сумма двух квадратов при делении на 4 может давать остатки 0, 1 или 2, но никак не 3. Представимость простых чисел вида 4k+1 неочевидна (особенно если заметить, что простота существенна: число 21 хотя и имеет нужный остаток, но суммой двух квадратов не представляется).

Вычеты

Натуральных чисел бесконечно много. Бывает полезно объединять их в классы по каким-нибудь признакам. В частности, объединение по остатку от деления на какое-нибудь число n приводит к вычетам по модулю n: вычет — это класс всех чисел, которые при делении на n дают тот же остаток, что и x. Что эквивалентно, вычет состоит из всех чисел вида x+n∙k, где k целое. В рамках данного поста все вычеты будут по модулю p (того самого нечётного простого числа из введения). Естественно, различных вычетов столько же, сколько может быть остатков от деления на p, то есть ровно p. По сравнению с бесконечностью натуральных чисел переход к вычетам сильно сокращает число вариантов.
Операции над классами далеко не всегда имеют смысл. Например, попытка сложить класс простых чисел с классом составных чисел не очень осмысленна: мы умеем складывать только числа, а у суммы простого числа и составного числа не видно свойств, общих для класса. Хотя члены клуба тавтологии и могут сказать, что сложение класса простых чисел и класса составных чисел даёт класс чисел, раскладывающихся в сумму простого числа и составного числа.

Для вычетов, тем не менее, сложение, вычитание и умножение, «унаследованные» от натуральных чисел, дают другие вычеты. Например, 2̅+3̅=5̅: возьмём любое число с остатком 2, любое число с остатком 3, и их сумма обязательно даст остаток 5. Вообще говоря, произведение двух ненулевых вычетов по произвольному модулю может внезапно оказаться нулём, 2̅∙3̅=0̅ по модулю 6, что неприятно. Но в случае простого модуля, очевидно, такого не бывает, как говорят, нет делителей нуля. Кроме того, можно решить уравнение a̅∙x̅=b̅ (операция деления) для любых двух вычетов, кроме случая a̅=0̅, и результат будет однозначно определён. Однозначность следует из того, что произведение ненулевых вычетов ненулевое. Поскольку a̅≠0̅, то наибольший общий делитель a и p равен 1 (здесь тоже нужна простота p), расширенный алгоритм Евклида найдёт x и y такие, что a∙x+p∙y=1, откуда следует a̅∙x̅=1̅, а значит, a̅∙(b̅∙x̅)=b̅.

Важное следствие из отсутствия делителей нуля: ненулевой многочлен от одной переменной степени n не может иметь более n корней. (Это хорошо известно для обычных целых чисел, но при использовании операций над вычетами требует дополнительного обоснования: уравнение 3̅∙x̅=0̅ по модулю 6 имеет три решения 0̅, 2̅, 4̅.) Действительно, обычное деление «в столбик» показывает, что любой многочлен f(x) можно представить в виде f(x)=(x-с)g(x)+(некоторая константа), где многочлен g(x) имеет степень на единицу меньше; если c — это корень f(x), то константа равна нулю (подставим x=c); если c’ — другой корень f(x), то он будет корнем g(x) (здесь важно отсутствие делителей нуля), так что процесс можно продолжить. Если уже набралось n корней, то оставшийся g(x) будет константой, причём ненулевой (иначе f(x)=0) и больше корней не имеет.

Вычеты по простому модулю можно складывать, вычитать, умножать. На ненулевые вычеты можно делить. Все эти операции обладают обычными свойствами типа a̅∙b̅=b̅∙a̅. В умных книгах говорят, что вычеты по простому модулю образуют поле (а вычеты по составному модулю, где делить нельзя, а всё остальное такое же, — коммутативное кольцо). И не надо быть умной книгой, чтобы назвать это поле конечным. Поле вычетов — не единственное конечное поле, но другие конечные поля нам не понадобятся.

Чуть-чуть про эллиптические кривые

Квадратичные вычеты и невычеты

Теперь мы готовы предъявить обещанные формулы для компонентов разложения p в сумму двух квадратов. Теорема. Пусть g — любой квадратичный невычет. Если p при делении на 4 даёт остаток 1, то
image loader
причём число в первой скобке целое нечётное, число во второй скобке целое чётное. Если же p при делении на 4 даёт остаток 3, то обе суммы в скобках нулевые (а значит, число точек на эллиптических кривых равно p+1).

Доказательство

Поскольку пост и без того длинный, доказательство убрано под спойлер. Его можно спокойно пропустить без ущерба для восприятия.

Если взять ненулевой вычет c и умножить его на все вычеты от до p̅-1̅, все произведения будут ненулевыми и попарно различными (если c∙x=c∙y, то c∙(x-y)=0̅, что при ненулевом c может быть только если x=y), а значит, это будет просто какая-то перестановка всех вычетов от до p̅-1̅. Следовательно, 1̅∙2̅∙. ∙(p̅-1̅)=(c∙1̅)∙(c∙2̅)∙. ∙(c∙(p̅-1̅))=c p-1 ∙1̅∙2̅∙. ∙(p̅-1̅) и c p-1 =1̅ для любого ненулевого вычета c. (Это было доказательство малой теоремы Ферма.)

Как следствие, получаем image loader.

Если p даёт остаток 1 при делении на 4, то слагаемые с x и -x равны и их сумма четна. Значит, вся сумма также четна и числа в скобках действительно целые. Чётность/нечётность после деления пополам ненамного сложнее: в первой скобке теоремы есть три нулевых слагаемых, остальные слагаемые разбиваются на (p-3)/2 пар с суммой ±2 в каждой паре; при любом знаке при делении на 4 получается остаток 2, вся сумма при делении на 4 даёт остаток такой же, как p-3, то есть 2. После деления пополам получим нечётное число. Во второй скобке теоремы всего одно нулевое слагаемое и (p-1)/2 пар с ±2, итоговый остаток от деления на 4 получается 0, после деления пополам остаётся чётное число.

Пусть p при делении на 4 даёт остаток 1. Обозначим первую скобку теоремы через a, вторую через b. Мы уже знаем, что a и b целые.

Итак, первый способ вычисления даёт
image loader

Если x2/x1 — квадратичный невычет, то аналогично эллиптическим кривым число решений равно 2p минус число решений в случае квадратичного вычета, то есть 2p-(p-1)=p+1.

Суммируем. Есть один вариант с x1=x2=0, дающий p решений. Есть 2(p-1) вариантов, где один из x нулевой, а другой ненулевой, каждый из вариантов даёт p решений. Есть 2(p-1) вариантов с x2=±x1, каждый из которых даёт 2p-1 решений. Есть (p-1)((p-1)/2-2) вариантов, где x1 — произвольный ненулевой вычет, а x2/x1 — квадратичный вычет, отличный от ±1̅, каждый из этих вариантов даёт p-1 решений. Наконец, остаётся (p-1) 2 /2 вариантов, где x1 — произвольный ненулевой вычет, а x2/x1 — квадратичный невычет, в каждом из этих вариантов p+1 решений. Итого image loader.

Сравнение двух выражений для N завершает доказательство.

Причём здесь криптография?

Знание числа точек на кривой важно для криптографии на этой кривой. На эллиптической кривой можно ввести операцию сложения точек (о чём слышали, наверное, все, кто хоть что-то знает о криптографии) со специальной точкой O в роли нуля. На основе операции сложения можно определить умножение на натуральное число: 2P=P+P, 3P=P+P+P и так далее. Так вот, можно доказать, что если n — порядок кривой, то nP=O для любой точки P. Зная n, c, d, можно решать уравнения вида x∙(cP)=dP полностью аналогично делению вычетов: расширенный алгоритм Евклида найдёт x, y такие, что c∙x+n∙y=1, откуда x∙(cP)+y∙(nP)=P, то есть x∙(cP)=P. При этом, если c, d неизвестны, а cP и dP заданы координатами, то эффективных методов деления в общем случае неизвестно.

Вычислить число точек на заданной кривой довольно сложно (полиномиальный алгоритм существует, но на практике довольно медленный). Чтобы построить кривую с какими-нибудь свойствами на число точек, можно пытаться взять случайные коэффициенты и вычислять число точек в цикле, пока не получится то, что надо, но придётся подождать. К счастью, есть другой способ.

Источник

Решение формулы суммы квадратов двух чисел

АННОТАЦИЯ

В настоящей статье нами впервые предложено решение формулы сокращенного произведения, которая может широко применена в решении различных математических задач, равенств и неравенств, а также для упрощения сложных алгебраических выражений, имеющих широкое практическое применение в науке и технике.

ABSTRACT

In this article, we first proposed a solution to the abbreviated product formula, which can be used in solving various mathematical problems, equalities and inequalities, as well as to simplify complex algebraic expressions that have wide practical applications in science and technology.

Ключевые слова: формулы сокращенного произведения, сумма квадратов двух чисел.

Keywords: formulas of short multiplication, sum of squares two numbers.

Известно, что при решении задач во всех разделах математики очень часто используют формулы сокращенного произведения (ФСУ) [1. 163-182, 2. 115, 3. 134]. Эти формулы удачно используются при упрощении сложных математических выражений, при решении алгебраических, тригонометрических уравнений, неравенств, геометрических задач, учебных и научных проблем различной сложности. Ниже приведены официально всем известные ФСУ в табличном виде, из учебников Алгебры для 7 класса:

Таблица 1.

Формулы сокращенного умножения

Формула

Название

(a+b) 2 =a 2 +2ab+b 2

Квадрат суммы двух чисел

Квадрат разности двух чисел

Square of difference

(a+b) 3 =a 3 +3a 2 b+3ab 2 +b 3

Куб суммы двух чисел

Куб разности двух чисел

Cube of difference

Сумма кубов двух чисел

Разность кубов двух чисел

Difference of cubes

Разность квадратов двух чисел

Difference of squares

Сумма квадратов двух чисел (Примечание: не разлагающаяся на члены) [8]

Sum of squares (Note: not expands) [8,10]

Наглядно видно из таблицы 1, что приведенные в ней формулы 1, 2; 3, 4; 5, 6; 7, 8 являются формулами-парами, которые отличаются нежели только со знаками у отдельных членов в левой части равенства. Однако, решение для урувнения формулой a 2 +b 2 (8) до настоящего времени ни в официальных источниках, также в учебной и научной литературе не была приведена 2. Тому можно убедиться после ознакомления в электронных интернет учебниках на английском, так и на других языках. В них формула (8) указана как “not expands” – «не разлагающаяся на члены» 8. Также, во всех учебниках для средних образовательных школ по математике, так и в пособиях для ВУЗов Узбекистана, России и Европейских стран, написанные на узбекском, английком, так и на русском языках, формула (8), до настоящего времени обозначается как, “не разлагающаяся на члены”.

В настоящей статье нами впервые предложена конкретное решение для формулы (8), для разложения суммы квадратов двух чисел на многочлены. Она имеет решение следующего вида:

image001 (8)

Доказательство. Результат последовательного произведения многочленов в правой части формулы (8), должны равняться сумме квадратов двух чисел, в левой части равенства. Для этого применяем правила последовательного умножения для многочленов к выражениям в скобках, в правой части равенства:

image002

Примечание. Члены с одинаковыми абсолютными значениями, но с различными знаками взаимно сокращаются, как показано ниже:

image003;

image004;

image005

Конец доказательства.

Предложенная нами формула для суммы квадратов двух чисел (8) является инновационной, новой и имеет в дальнейшем практическое применение как в математике, информатике, ИТ, в точных науках в целом, так и в других отраслях науки и техники.

Список литературы

Источник

Нумерология: никакого гадания, только теория чисел

В данной статье речь пойдёт о таких понятиях теории чисел, как цифровой корень и ведический квадрат.

Данная статья ничего не говорит о нумерологии, кроме того, что это псевдонаучная концепция.

Цель данной статьи: показать математические закономерности вокруг вычисления цифрового корня и его связь с циклическими числами.

Введение

Несколько дней назад я решил написать незатейливую статью про нумерологическое сложение. Моей целью было показать, что даже такая незамысловатая операция может иметь большое количество интересных закономерностей. Многие из этих закономерностей я нашёл ещё в школьное время, когда скучал на уроках географии. При внимательном рассмотрении я нашёл больше закономерностей, чем ожидал, и это привело меня назад к моей любимой теме full reptend prime.

После я внимательно изучил то, что нашёл, узнал, что многие из этих понятий уже существуют, и решил переписать статью заново, чтобы опираться на общеизвестные понятия. Помимо известных понятий я добавил собственные визуализации, чтобы сделать чтение немного более увлекательным.

Сумма цифр и цифровой корень

Аддитивная стойкость натурального числа — это количество итераций, на которых нужно применить операцию суммы цифр, для того чтобы получить цифровой корень.

Пример: Цифровая сумма числа 142857 равна 1 + 4 + 2 + 8 + 5 + 7 = 27

Цифровая сумма числа 27 равна 2 + 7 = 9

Как следствие, цифровой корень числа 142857 = 9, аддитивная стойкость 142857 = 2.

Код для вычисления цифрового корня в произвольной системе счисления на языке Python:

Применение цифровой суммы

Цифровые суммы применялись при расчёте контрольных сумм для проверки арифметических операций ранних компьютеров. Ранее, в эпоху ручного счета, Фрэнсис Исидор Эджуорт предложил использовать суммы 50 цифр, взятых из математических таблиц логарифмов, в качестве формы генерации случайных чисел; если предположить, что каждая цифра случайна, то по центральной предельной теореме эти цифровые суммы будут иметь случайное распределение, близкое к гауссову распределению.

Цифровая сумма двоичного представления числа известна как вес Хэмминга или численность населения. Алгоритмы выполнения этой операции были изучены, и она была включена в качестве встроенной операции в некоторые компьютерные архитектуры и некоторые языки программирования. Эти операции используются в вычислительных приложениях, включая криптографию, теорию кодирования и компьютерные шахматы.

Улучшение алгоритма вычисления цифрового корня

Свойства цифрового корня

Операция сложения

Сделаем небольшую таблицу, для того чтобы изучить закономерности, каким образом вычисляется цифровой корень суммы двух чисел:

image loaderТаблица для анализа операции цифрового корня суммы двух чисел.

Код для построения таблицы суммы:

Как можно увидеть, цифровой корень суммы чисел равен цифровому корню суммы цифровых корней этих чисел:

45d104d35ddd301e1ba6e98b454e2f1f

Операция вычитания

Формула похожа на предыдущую, однако совпадает не полностью.

e933e170428c265b731e449e4ec0aee5

5056d1127a6f40881887a2ccebc7b858

Операция умножения

Выведем вариацию таблицы умножения, для того чтобы исследовать эту операцию:

image loaderРасчет цифрового корня от двух множителей

Код для вывода таблицы умножения:

Запишем значения для каждого множителя:

1) [1, 2, 3, 4, 5, 6, 7, 8, 9]

2) [2, 4, 6, 8, 1, 3, 5, 7, 9]

3) [3, 6, 9, 3, 6, 9, 3, 6, 9]

4) [4, 8, 3, 7, 2, 6, 1, 5, 9]

5) [5, 1, 6, 2, 7, 3, 8, 4, 9]

6) [6, 3, 9, 6, 3, 9, 6, 3, 9]

7) [7, 5, 3, 1, 8, 6, 4, 2, 9]

8) [8, 7, 6, 5, 4, 3, 2, 1, 9]

9) [9, 9, 9, 9, 9, 9, 9, 9, 9]

image loaderПоследовательности для множителей 1, 2, 3, 4. Они же являются зеркальными для 8, 7, 6, 5.

Для нахождения последовательности любой линии можно записать формулу:

0d449e3a9424f84dc4f01dcc09e2b52f

Если записать эти значения как множество пересечений всех множителей, мы получим в результате ведический квадрат.

image loaderВедический квадрат для десятичной системы счисления.

image loaderПриведение ведического квадрата к латинскому квадрату в десятичной системе счисления.

В результате мы получим:

image loaderПодмножество ведического квадрата, составляющее латинский квадрат в десятичной системе счисления.

Если переставить некоторые из его строчек местами, мы получим последовательность циклических чисел. О том, каким образом должны быть осуществлены перестановки строчек, будет рассказано ниже при исследовании других операций с цифровым корнем.

76fed3822aa414b92f0a16ecc74b0695Ведические квадраты для систем счисления 100 и 1000.

Теперь вернемся к произведению. Цифровой корень произведения одиночных цифр в заданной системе счисления вычисляется при помощи соответствующего ведического квадрата.

Для вычисления цифрового корня произведения двух чисел, которые содержат больше одной цифры, для начала нужно вычислить цифровой корень каждой из этих цифр, и после этого воспользоваться ведической площадью.

0c705b73ac03b8cbe7ad378e928f2e0b

Операция деления

Рассмотрим те числа, которые дают при делении непериодические дроби, это 2, 5, 4, 8.

Для того чтобы быть уверенными, что мы не допускаем ошибок, воспользуемся уже выведенными правилами и умножим результат деления на 1000; так как цифровой корень 1000 равен 1, то произведение будет иметь тот же самый цифровой корень.

image loaderТаблица деления для делителей, которые взаимно просты с десятичной системой счисления.

Тут бросаются в глаза несколько закономерностей. Число 9 не только при умножении, но и при делении приводит к значению цифрового корня, равному 9. Интересное происходит также с числами 3 и 6, эти числа как при умножении, так и при делении дают абсолютно одинаковые значения цифрового корня.

Запишем в таблицу череду делений:

Операция деления для цифрового корня определена только для делителей, которые не являются взаимно простыми с основанием системы счисления.

Операция возведения в степень

Таблица возведения в степень:

image loaderТаблица возведения в степень в десятичной системе счисления.

Здесь мы можем наблюдать цикличность.

Рассмотрим систему счисления 8, череда его значений будет равна [1, 3, 2, 6, 4, 5]. Именно такие же остатки от деления мы получаем при делении числа в десятичной системе счисления.

image loaderДеление 1 на 7 в столбик. Здесь мы можем наблюдать остатки от деления [1, 3, 2, 6, 4, 5]. image loaderПоследовательность полученная при возведении в степень, в восьмеричной системе счисления.

Это свойство связано с тем, что вычисление цифрового корня можно осуществить при помощи альтернативной формулы расчета цифрового корня:

28c8f6d376991afc9b3c0cdbf0c498fd

Ещё визуализации

image loaderОстатки от деления, найденные в 6 системе счисления, связанные с числом 5. image loaderОстатки от деления, найденные в 10 системе счисления, связанные с квадратом числа 3. image loaderОстатки от деления, найденные в 12 системе счисления, связанные с числом 11. image loaderОстатки от деления, найденные в 14 системе счисления, связанные с числом 13. image loaderОстатки от деления, найденные в 18 системе счисления, связанные с числом 17. image loaderОстатки от деления, найденные в 20 системе счисления, связанные с числом 19. image loaderОстатки от деления, найденные в 26 системе счисления, связанные с квадратом числа 5. image loaderОстатки от деления, найденные в 28 системе счисления, связанные с кубом числа 3.

Теперь приведём несколько картинок из ведических квадратов, принцип их формирования очень прост, потому ограничимся небольшим количеством:

image loaderЗамкнутая фигура из 6 системы счисления, связана с числом 5. image loaderЗамкнутые фигуры из 8 системы счисления, связанные с числом 7. image loaderЗамкнутые фигуры из 12 системы счисления, связанные с числом 11.

Образование циклических чисел при помощи ведической площади и остатков от деления

После того как мы получили латинский квадрат из ведического квадрата, пронумеруем его строки последовательно:

image loaderПронумерованный латинский квадрат.

Теперь мы можем переставить строки на основании череды остатков от деления, таким образом мы получим последовательность циклических чисел. Напомню, остатки от деления были равны [1, 3, 2, 6, 4, 5]. В результате у нас получится следующая картина:

image loaderПерестановки в пронумерованном латинском квадрате, в результате мы получили циклическое число.

Как можно наблюдать, первый столбец теперь представляет собой циклическое число 142857.

Выводы

Несмотря на плохую репутацию нумерологии, операции суммы цифр и цифрового корня имеют пусть не широкое, но всё же практическое применение.

Например, с помощью цифрового корня можно сформировать множество замкнутых n-вершинных звезд, многие из которых очень любят современные рок\метал группы 🙂

Как можно видеть, многие метал группы тоже любят теорию чисел!

Но лично я для своей метал группы решил выбрать анимированный логотип, составленный из одновременной визуализации периодических дробей, образованных из 90 рациональных дробей 1/91..90/91:

image loaderПочему я выбрал число 91, которое является произведением 7 и 13? Речь об этом пойдет в следующей статье 🙂

Если у кого-то есть дополнительная информация об описанных выше понятиях, пожалуйста присылайте её в комментарии, я буду очень благодарен!

Надеюсь, что вам было интересно, большое спасибо за внимание!

Источник

Мир познаний
Добавить комментарий

Adblock
detector