Что такое сумма разрядов

Содержание
  1. Сумма разрядных слагаемых
  2. Сумма разрядных слагаемых
  3. Разряды и классы чисел
  4. Примеры
  5. Сумма разрядных слагаемых натурального числа
  6. Каким образом можно разложить число по разрядам?
  7. Как раскладывать числа?
  8. Как найти натуральное число, если известна сумма разрядных слагаемых?
  9. Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых.
  10. Многозначные числа.
  11. Разряды чисел.
  12. Классы.
  13. Таблица разрядов и классов.
  14. Сумма разрядных слагаемых.
  15. Натуральные числа и их классификация
  16. Распределение по категориям
  17. Комплектация разрядов
  18. Особенности разложения
  19. Упражнения для тренировки
  20. Определение, что такое разрядные слагаемые с примерами разряда и класса в математике
  21. Числа и цифры
  22. Натуральные числа
  23. Разряды и классы натуральных чисел
  24. Складываем и вычитаем через разряды
  25. Сложение столбиком
  26. Вычитание столбиком
  27. Разрядные Слагаемые Натуральные слогаемые
  28. Замена числа суммой разрядных слагаемых. Видеоурок. Математика 3 Класс
  29. Классы и разряды чисел-математика | Таблица классов и разрядов
  30. Натуральные числа
  31. Разрядность чисел
  32. Классы и разряды
  33. Как прочитать многозначное число
  34. Сумма разрядных слагаемых натурального числа
  35. Как раскладывать числа?
  36. Как найти натуральное число, если известна сумма разрядных слагаемых?
  37. Что такое разрядные слогаемые
  38. Рассмотрим пример определения разрядных слагаемых числа 92586
  39. Разрядные слагаемые
  40. Обозначение натуральных чисел (Разряды и классы в записи числа)

Сумма разрядных слагаемых

5fd384d72feb7933645633

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Сумма разрядных слагаемых

Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых. Сумму разрядных слагаемых можно записать следующим образом:

35 = 3 десятка + 5 единиц = 3*10 = 30 + 5 = 35.

30 — разрядное слагаемое; 5 — разрядное слагаемое.

86 = 8 десятков + 6 единиц = 8*10 = 80 + 6 = 86

80 — разрядное слагаемое; 5 — разрядное слагаемое.

356 = 3 сотни + 5 десятков + 6 единиц = 3*100 + 5*10 + 6 = 300+50+6 = 356.

300, 50, 6 — разрядные слагаемые.

Онлайн-курсы математики для детей помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Разряды и классы чисел

Чтобы без труда записывать числа в виде суммы разрядных слагаемых, нужно безошибочно определять класс и разряд числа.

В многозначном числе цифры справа налево разбиваются на группы по три цифры. Такие группы называют классами.

5fd384d7a7816132665983

Названия классов многозначных чисел:

Чтобы чтение многозначного числа не превращалось в головоломку, при записи лучше разграничивать число по классам. Вот так:

Читаться такое число будет слева направо: триста сорок пять миллиардов четыреста шестьдесят шесть миллионов сто двадцать девять тысяч триста пятьдесят.

Разряд — это место, которое занимает цифра в записи многозначного числа.

Разряды считаются справа налево. Первая цифра справа в записи числа относится к первому разряду.

Разрядные единицы — это единицы, десятки, сотни, тысячи, миллионы.

Все разрядные единицы, за исключением простых единиц, — составные единицы. Каждые десять единиц одного разряда составляют одну единицу следующего разряда.

Если составная единица больше другой единицы — она называется единицей высшего разряда. Если меньше, то единицей низшего разряда. Так, например, сотня — единица высшего разряда относительно десятка, но низшего разряда относительно тысячи.

Чтобы выяснить сколько всего в числе единиц определенного разряда, нужно мысленно вычеркнуть из числа все цифры низшего разряда.

Это значит, нужно выяснить, сколько сотен заключается в тысячах и в сотнях этого числа. 5689 — на третьем месте в классе единиц стоит цифра 6, значит в числе есть 6 сотен. Следующая влево цифра — 5 (тысячи). 1 тысяча = 10 сотен. 5 тысяч = 50 сотен. Всего в числе 56 сотен.

Если в разряде стоит цифра 0, то это означает отсутствие единиц, десятков, сотен и т.д., в зависимости от того, где именно содержится цифра.

Иногда бывает необходимо не только разложить число на разрядные слагаемые, но и определить количество единиц какого-то определенного разряда.

В такой ситуации можете выполнить подробный разбор числа.

Шесть миллионов пятьдесят семь тысяч триста восемьдесят шесть

6 057 386 = 6 * 1 000 000 + 0 * 100 000 + 5 * 10 000 + 7 * 1000 + 3 * 100 + 8 * 10 + 6 = 6 000 000 + 50 000 + 7 000 + 300 + 80 + 6.

Из чего состоит это число? Из:

Для того, чтобы алгоритм разложения числа на простые слагаемые был всегда под рукой, сохраняйте себе табличку с примером. В ней вы найдете вопросы, которые помогут разложите любое число.

Определите, сколько единиц в числе 5 068 252.

1. Определяем сколько всего единиц в числе.

2. Определяем количество десятков.
Записываем число без первого разряда (единицы).

3. Определяем количество сотен.
Записываем число без первого
и второго разрядов (десятки и сотни).

4. Определяем количество единиц тысяч.
Записываем число без первого, второго,
третьего разрядов (единицы, десятки, сотни).

5. Определяем количество десятков тысяч.
Записываем число без первого, второго, третьего,
четвертого разрядов (единицы, десятки, сотни, единицы тысяч).

6. Определяем количество сотен тысяч.
Записываем число без десятков тысяч, единиц тысяч,
сотен и единиц.

7. Определяем количество единиц миллионов.
Записываем число без сотен тысяч, десятков тысяч,
единиц тысяч, сотен, десятков, единиц.

Расписав таким образом число, мы выяснили, что в числе 5 068 252: 5 единиц класса миллионов (3 класс); 68 единиц класса тысяч (2 класс); 252 единицы класса единиц (1 класс).

Может показаться, что такой подробный разбор ни к чему, что и без того все понятно, но многоразрядные многозначные числа — коварны. Лучше хорошенько потренироваться, используя все вспомогательные материалы, как эта табличка, а потом уже раскладывать любое число за секунды и в уме.

Примеры

Внимательно просмотрите примеры и попробуйте самостоятельно представить числа в виде суммы разрядных слагаемых.

Представьте в виде суммы разрядных слагаемых:

Как видите, все довольно просто. Занятие весьма успокаивающее, медитативное. Приятно сесть после тяжелого дня и пораскладывать числа на разрядные слагаемые.

Если вдруг так вышло, что вы не расслабляетесь при виде цифр, то воспользуйтесь онлайн-калькулятором. В интернете таких калькуляторов немало, вот один из них.

Так вы сможете разложить на разрядные слагаемые любое, даже самое гигантское, число. Важно разобраться в разрядах и классах чисел, тогда вы точно ничего не перепутаете.

Источник

Сумма разрядных слагаемых натурального числа

Представленная статья посвящена интересной теме о натуральных числах. Для того, чтобы выполнять некоторые действия, необходимо представлять исходные выражения как сложение нескольких чисел – другим языком, раскладывать числа по разрядам. Обратный процесс также очень важен для решения упражнений и задач.

В данном разделе детально рассмотрим типичные примеры для лучшего усвоения информации. Мы также научимся преобразовывать натуральные числа и записывать их в другом виде.

Каким образом можно разложить число по разрядам?

Исходя из названия статьи, можно сделать вывод, что этот параграф посвящен таким математическим терминам, как «сумма» и «слагаемые». Перед тем, как приступить к изучению данной информации, следует подробно изучить тему, чтобы иметь понятие о натуральных числах.

Приступим к работе и рассмотрим основные понятия о разрядных слагаемых.

Следует помнить, что все разрядные слагаемые числа содержат разное количество знаков в своей записи.

Сумма разрядных слагаемых натурального числа равна этому числу.

Перейдем к понятию разрядных слагаемых.

Разрядные слагаемые– это такие натуральные числа, в записи которых содержится цифра, отличная от нуля. Количество чисел должно быть равно количеству цифр, не равных нулю. Все слагаемые числа могут записываться с различным количеством знаков. Если мы раскладываем число по разрядам, то сумма слагаемых числа всегда будет равна этому числу.

Проанализировав понятие, можно сделать вывод, что однозначные и многозначные числа (полностью состоящие из нулей за исключением первой цифры) нельзя представить в качестве суммы. Это происходит потому, что данные числа сами будут разрядными слагаемыми для каких-то чисел. За исключением данных чисел, все остальные примеры могут раскладываться на слагаемые.

Как раскладывать числа?

Смотря на этот пример, мы сможем любое натуральное число представить в виде суммы разрядных слагаемых.

Мы разобрали основные понятия. Разрядные слагаемые получили свое название из-за того, что каждое принадлежит к определенному разряду.

Как найти натуральное число, если известна сумма разрядных слагаемых?

Для того, чтобы разобрать данный пример, проанализируем обратную задачу. Представим, что нам известна сумма разрядных слагаемых. Нам необходимо найти данное натуральное число.

Еще один способ нахождения натурального числа – это сложение в столбцах разрядных слагаемых. Данный пример не должен вызвать у вас сложности во время выполнения. Поговорим об этом подробнее.

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу.

Получаем:
image002 k2hDupB

Поговорим еще об одном моменте. Если мы научимся раскладывать числа и представлять их в виде суммы разрядных слагаемых, то мы также сможем представлять натуральные число в виде суммы слагаемых, не являющихся разрядными.

Иногда сложные вычисления можно немного упростить. Рассмотрим еще небольшой пример для закрепления информации.

Источник

Многозначные числа. Единицы разрядов и классов. Сумма разрядных слагаемых.

Многозначные числа.

Существуют в математике огромное количество натуральных чисел. Они все разные. Например, 2, 67, 354, 1009. Рассмотрим подробно эти числа.
Натуральное число 2 состоит из одной цифры, поэтому такое число называют, однозначным числом. Еще пример однозначных чисел: 3, 5, 8.
Натуральное число 67 состоит из двух цифр, поэтому такое число называют, двузначным числом. Пример двузначных чисел: 12, 35, 99.
Трехзначные числа состоят из трех цифр, например: 354, 444, 780.
Четырехзначные числа состоят из четырёх цифр, например: 1009, 2600, 5732.

Двузначные, трехзначные, четырехзначные, пятизначные, шестизначные и т.д. числа, называются, многозначными числами.

Разряды чисел.

Рассмотрим число 134. У каждой цифры этого числа есть свое место. Такие места, называются, разрядами.

Цифра 4 занимает место или разряд единиц. Так же цифру 4 можно назвать цифрой первого разряда.
Цифра 3 занимает место или разряд десятков. Или цифру 3 можно назвать цифрой второго разряда.
И цифра 1 занимает разряд сотен. По-другому, цифру 1 можно назвать цифрой третьего разряда. Цифра 1 является последней цифрой слава числа 134, поэтому цифру 1 можно назвать, цифрой высшего разряда. Цифра высшего разряда всегда больше 0.

Каждые 10 единиц любого разряда образуют новую единицу более высокого разряда. 10 единиц образуют один разряд десяток, 10 десятков образуют один разряд сотен, десять сотен образуют разряд тысяч и т.д.
Если нет какого-то разряда, то вместо него будет стоять 0.

Например: число 208.
Цифра 8 – первый разряд единиц.
Цифра 0 – второй разряд десятков. 0 означает в математике ничего. Из записи следует, что десятков у данного числа нет.
Цифра 2 – третий разряд сотен.

Такой разбор числа называется разрядным составом числа.

Классы.

Многозначные числа разбивают на группы по три цифры справа налево. Такие группы цифр называют классам. Первый класс справа называется классом единиц, второй называется классом тысяч, третий – классом миллионов, четвёртый – классом миллиардов, пятый – классом триллионов, шестой – классом квадриллионов, седьмой – классом квинтиллионов, восьмой – классом секстиллионов.

Класс единиц – первый класс справа с конца три цифры состоит из разряда единиц, разряда десятков и разряда сотен.
Класс тысяч – второй класс состоит из разряда: единиц тысяч, десятков тысяч и сотен тысяч.
Класс миллионов – третий класс состоит из разряда: единиц миллионов, десятков миллионов и сотен миллионов.

Разберем пример:
У нас есть число 13 562 006 891.
Это число имеет 891 единиц в классе единиц, 6 единиц в классе тысяч, 562 единиц в классе миллионов и 13 единиц в классе миллиардов.

Таблица разрядов и классов.

Чтобы прочитать натуральное число 13562006891 нужно справа отметить по три цифры класса 13 562 006 891 и прочитать число единиц каждого класса слева направо:

%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0 %D1%80%D0%B0%D0%B7%D1%80%D1%8F%D0%B4%D0%BE%D0%B2 %D0%B8 %D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%BE%D0%B213 миллиардов 562 миллионов 6 тысяч 891.

Сумма разрядных слагаемых.

Любое натурально число имеющее различные разряды можно разложить на сумму разрядных слагаемых. Рассмотрим пример:
Число 4062 распишем на разряды.

4 тысяч 0 сотен 6 десятков 2 единиц или по-другому можно записать

4062=4 ⋅1000+0 ⋅100+6 ⋅10+2

Следующий пример:
26490=2 ⋅10000+6 ⋅1000+4 ⋅100+9 ⋅10+0

Вопросы по теме:

Назовите первые четыре класса в записи натуральных чисел?
Ответ: класс единиц, класс тысяч, класс миллионов, класс миллиардов.

Как читают многозначные числа?
Ответ: многозначные числа читают слева направо. Разбивают число по 3 цифры с конца на классы, называют все цифры, кроме нуля. Цифра 0 в записи числа означают отсутствие разряда.

Какие цифры могут стоять в любом разряде числа, кроме высшего?
Ответ: 0, 1, 2, 3, 4. 5, 6, 7, 8, 9.

Какие цифры могут стоять в высшем разряде числа?
Ответ: 1, 2, 3, 4. 5, 6, 7, 8, 9.

Что такое сумма разрядных слагаемых?
Ответ: Это разложение натурального числа на разряды и суммирование их.

Сколько десятков в сотне?
Ответ: в сотне 10 десятков.(10+10+10+10+10+10+10+10+10+10=100)

Сколько сотен в тысячи?
Ответ: в тысячи 10 сотен. (100+100+100+100+100+100+100+100+100+100=1000)

Сколько десятков в тысячи?
Ответ: в тысячи 100 десятков.

Сколько тысяч в миллионе?
Ответ: в миллионе 1000 тысяч.

Пример №1:
Запишите и прочитайте число: а) пятизначное б) шестизначное.
Ответ: а) 35 100 (тридцать пять тысяч сто) б) 803 273 (восемьсот три тысячи двести семьдесят три)

Пример №2:
Сколько натуральных чисел: а) однозначных б) двузначных?
Ответ: а) однозначных натуральных чисел 10 (0, 1, 2, 3, 4. 5, 6, 7, 8, 9), б) двузначных натуральных чисел 90 (10, 11, 12, …,99)

Пример №3:
В записи числа 10398 назовите цифры разрядов единиц, десятков, сотен, тысяч, десятков тысяч, …
Ответ: 8 – разряд единиц, 9 – разряд десятков, 3 – разряд сотен, 0 – разряд тысяч, 1 – разряд десятков тысяч.

Пример №4:
Напишите наименьшее трехзначное число и наибольшее пятизначное число.
Ответ: 100 и 99999.

Пример №5:
Запишите число 56976 в виде суммы разрядных слагаемых:
Ответ: 56976=50000+6000+900+70+6=5⋅10000+6⋅1000+9⋅100+7⋅10+6

Источник

razlozhit razryadnye slagaemye

Натуральные числа и их классификация

Натуральными называют естественные величины, которые используются для счета (цифры и их комбинации: 1, 2, 3, 4, 5 и так далее), а также для расстановки по очереди (порядковые числительные: первый, второй, третий, четвертый и так далее). В совокупности они образуют так называемый ряд натуральных чисел. Его обозначением служит латинская буква N.

Главной особенностью этого ряда считается его бесконечность. Она обусловлена тем, что самого большого числа не существует. У любой составляющей ряда есть «старшие товарищи» — величины, которые по своему значению больше.

razryadnye slagaemye

Распределение по категориям

Составляющие ряда натуральных чисел подразделяются на разряды и классы. Каждая из этих категорий неразрывно связана с другими. Разрядная классификация состоит из следующих групп (в скобках приведены слагаемые, соответствующие каждому разряду):

Разряд числа — это положение, которое оно занимает в цифровой записи. Таким образом, любое числовое значение можно представить посредством разрядных слагаемых по математической формуле следующего вида: nnnn = n000 + n00 + n0 + n, где n означает любую цифру от 0 до 9. Для наглядного примера стоит разбить на составляющие число 4698 = 4000 + 600 + 90 + 8. Получается, что оно состоит из четырех разрядов, отображенных соответствующими составляющими:

takoe razryadnye slagaemye

Разряд первого слагаемого называют высшим. Цифра, которой он обозначается, всегда больше нуля. Количество разрядов числа, как и количество его разрядных составляющих, всегда соответствует количеству в нем цифр, отличных от 0. Например, число 7052 состоит из трех разрядов, несмотря на свою четырехзначность. Это связано с тем, что в его составе отсутствуют сотни. Его слагаемые — семь тысяч, пять десятков и две простых единицы (7000 + 50 + 2 = 7052).

Разрядные составляющие — это натуральные числа, содержащие только одну цифру, отличную от нуля. Примеры разрядных слагаемых: 7, 30, 200, 4000 и тому подобные. Числа такого вида, как 12, 21, 475, 3500 и так далее, не могут быть отнесены к этой категории. Они подлежат математическому разложению на составляющие.

Название разрядных слагаемых обусловлено принадлежностью каждого из них к определенному разряду. Тысяча считается единицей четвертого разряда, сотня — единицей третьего разряда, десяток — второго, единица — первого. То есть нумерация разрядов начинается от наименьшей составляющей. Единицы первого разряда называются простыми, так как они однозначные. Составляющие прочих разрядов относятся к составным.

Каждый разряд состоит из десяти единиц, но обозначаться он может только девятью, так как десятая единица обеспечивает переход на следующий более высокий разряд. Не может быть разрядной составляющей типа десяти сотен — эта единица обозначается как одна тысяча.

Комплектация разрядов

В целях упрощения записи представления числа через разрядные составляющие единицы разрядов принято группировать в классы. В состав каждого из них входит три разряда:

takoe razryadnye slagaemye

Для удобства между классами разрешается ставить пробел. Особенно это необходимо для представлений очень больших величин (от миллиона), чтобы они не выглядели бесконечным набором цифр, и в процессе их разложения не возникло путаницы. На классы число разбивается строго по три цифры справа налево.

Первый класс — это единицы. Он включает от одного до трех разрядов. Это значит, что к нему относятся все натуральные числа от 1 до 999. Второй класс — это тысячи. В него входят от четырех до шести разрядов. То есть единицы, принадлежащие к этому классу, есть во всех величинах от 1000 и больше. Дальнейшее распределение по классам:

Распределение по классовым и разрядным категориям отображено в таблице:

Особенности разложения

Чтобы лучше понять, что такое разрядные слагаемые в математике и как их использовать, стоит подробно рассмотреть процесс разложения натуральных величин на эти составляющие. В основе большинства задач с разрядными слагаемыми лежит разложение натурального числа, то есть его представление в виде суммы разрядов через сложение количеств всех разрядных единиц.

Преобразить в сумму разрядных слагаемых можно каждую натуральную величину составного типа, то есть многозначную (двузначную, трехзначную и так далее). Чтобы разложить число на разрядные слагаемые корректно, необходимо соблюдать основные правила. Первое — нули не учитываются в разрядном составе числа. Второе — слагаемые записываются в порядке старшинства, то есть от старшего к младшему — вначале тысячи, затем сотни и десятки, последними фиксируются простые единицы.

Разрядный состав можно записать в трех вариантах разбора:

Вне зависимости от выбранного способа разложить число на составляющие по разрядам не составит особого труда. Конечно, чем больше число, тем выше риск запутаться и совершить ошибку. Упражняться лучше сперва на двузначных числах, а затем постепенно повышать разрядность.

razryadnye slagaemye primer

Упражнения для тренировки

Для лучшего усвоения материала стоит разобрать несколько тренировочных упражнений. Несколько примеров, какими бывают математические задания по этой теме:

Нередки упражнения с обратным процессом, то есть такие, в которых нужно найти число по его составляющим:

summy razryadnyh slagaemyh

Стоит отметить, что не все задачи с разрядными составляющими решаются путем сложения. Многие упражнения содержат прием их вычитания. Но сложными такие задания кажутся только на первый взгляд. Их суть проста. В скобках приводятся составляющие двух чисел — уменьшаемого и вычитаемого. Требуется найти их разность: (500 + 40 + 1) — (400 + 20) = (100 + 20 + 1) = 121.

Процессы разложения чисел по разрядам и обратного сложения имеют огромное значение для решения различных математических задач и упражнений. Очень важно уметь быстро раскладывать числа любой величины по разрядному составу. Это умение поможет в устном счете и оперировании многозначными числами.

Изучение натуральных чисел и разрядного состава входит в базовую программу по математике. Этот материал проходится учащимися в начальных классах школы.

Источник

Определение, что такое разрядные слагаемые с примерами разряда и класса в математике

В начальных классах дети изучают «Разряды и классы чисел», однако эта тема вызывает много вопросов у родителей.

В этой статье Вы сможете «освежить» свои знания и объяснить ребенку эту тему.

Числа и цифры

ЧИСЛА — это единицы счёта. С помощью чисел можно сосчитать количество предметов и определить различные величины (длину, ширину, высоту и т. д.).
Для записи чисел используются специальные знаки — ЦИФРЫ.
Цифр десять: 1 2 3 4 5 6 7 8 9 0

Натуральные числа

НАТУРАЛЬНЫЕ ЧИСЛА — это числа, которые используются при счёте.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …,
1 — самое маленькое число, а самого большого числа не существует.
Число 0 (нуль) обозначает отсутствие предмета. Нуль НЕ является натуральным числом.

Разряды и классы натуральных чисел

Для записи чисел используется ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ. В десятичной системе счисления пользуются единицами, десятками единиц, десятками десятков — сотнями и т. д.
Каждая новая единица счёта больше предыдущей ровно в 10 раз:

4a95ee53e6a17e6c9a378f7ed5746dd5

Десятичная система счисления — позиционная. В этой системе счисления значение каждой цифры в записи числа зависит от её позиции (места).

Позиция (место) цифры в записи числа называется РАЗРЯДОМ. Самый младший разряд — ЕДИНИЦЫ. Затем следуют ДЕСЯТКИ, СОТНИ, ТЫСЯЧИ и т. д.

7007b345af10fa9ab6ad0cc9ca0b0315

Каждые три разряда натуральных чисел образуют КЛАСС.

5c2da1fcb303116cadd95fa4abc3d670Плакат «Сделай уроки сам!» 3-4 класс https://делайурокисам.рф

Основной вопрос, который родители часто задают: зачем ребенку эти знания? Ответ на этот вопрос очень простой — после изучения этого материала, дети переходят к таким темам как сложение и вычитание в столбик, где обязательно необходимо знать разряды числа, чтобы правильно вычислить примеры.

И если ребенок не освоит эту тему, тогда он не сможет правильно решать в столбик.

Складываем и вычитаем через разряды

Сложение столбиком

186461e61aa95815849c9fa0f03c68b1А) Складываем единицы: 4 + 3 = 7.
Записываем под единицами.
Б) Складываем десятки: 4 + 3 = 7.
Записываем под десятками.
В) Складываем сотни: 4 + 3 = 7.
Записываем под сотнями.
Ответ: 777

Вычитание столбиком

7a336a54b0f90bc2d5a6a72bc51ca003А) Вычитаем единицы: 9 – 3 = 6.
Записываем под единицами.
Б) Вычитаем десятки: 0 меньше,
чем 2, занимаем в сотнях (тысячах).

10 – 2 = 8. Записываем под десятками.
В) Вычитаем сотни: 9 – 4 = 5.
Записываем под сотнями.
Ответ: 586

eee20ea7a121fb1adc079b2508096f78
c2f5250ecb6dee9cffd137a8777600f5

По данным исследования, дети, которые едят питательные и здоровые завтраки, достигают лучших результатов в обучении. Не знаете, что приготовить своему ребенку на завтрак? Смотрите 5 рецептов здорового завтрака для школьника.Читать далее

нет комментариев 3741a4e64a1d823a28655982a9c4de49

В статье рассказывается о том, чем можно занять ребенка в дороге.Читать далее

нет комментариев 33008dec12846db3e686599f4f884b52

В статье рассказывается о том, как именно должны относиться родители к выполнению домашних уроков ребенка, что им следует делать для того чтобы был заметен прогресс, подробно описаны рекомендации.Читать далее

нет комментариев 92b7cd51a26fed400f6faf6853a08dd3

В статье рассказывается о том, как правильно научить ребенка тратить свои деньги, что для этого следует делать.Читать далее

А как часто детские вопросы загоняют в угол старших? В этой статье вы можете найти ответы на детские вопросы и советы о воспитании самых дорогих вам людей.Читать далее

Разрядные Слагаемые Натуральные слогаемые

Инфоурок › Математика ›Презентации›Разрядные Слагаемые Натуральные слогаемые

Важно! Узнайте, чем закончилась проверка учебного центра «Инфоурок»? 3d3d338924732c53b5a72131501bc89f

Описание презентации по отдельным слайдам:

1 слайд 824074f6d9a73ebac010bcb2b0c05f3aОписание слайда:

Разрядные слагаемые Выполнила: Перепелкина Карина

2 слайд 6f1746f31c45f524ccde0b29df8533c2Описание слайда:

Введение Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых. Например, число 64 состоит из 6 десятков и 4 единиц. 64 = 6 десятков + 4 единицы = 6 • 10 + 4 = 60 + 4

3 слайд 630a650096a0b80af76f0d7fe0e3a2d1Описание слайда:

Цель: Научить представлять многозначные числа в виде суммы разрядных слагаемых.

4 слайд 8a5d7a491a778836f0ba733701439ff7Описание слайда:

5 слайд 76ecda41b08d0f9aad48a350a8e87d32Описание слайда:

Разрядные слагаемые данного натурального числа – это такие натуральные числа, в записи которых только одна цифра, отличная от цифры 0; количество которых равно количеству цифр в данном натуральном числе, отличных от цифры 0; записи которых состоят из разного количества знаков; сумма которых равна данному натуральному числу.

6 слайд c53d336eb7f74945c2391b1391234da9Описание слайда:

Разложите числа на разрядные слагаемые: 72 813 91 247

7 слайд 13a21e9e036da080278939f65afac25cОписание слайда:

Ответы: 1) 72813=70000+2000+800+10+3 2) 91247=90000+1000+200+40+7

8 слайд 964262778e912304b1834610e7987284Описание слайда:

Решите задачу с помощью разложения на разрядные слагаемые: В одном колхозе было 3500 овец. По сколько овец получиться, если сделать два колхоза. Решите задачу и представьте полученный ответ в виде суммы разрядных слагаемых.

9 слайд ef8ad8caf4a58f877294691cf69f5e84Описание слайда:

Ответ: 3500:2=1750(овец) 1750=1000+700+500

10 слайд Описание слайда:

Прочитайте числа: 5115; 8404; 3067; 7698 и запишите то число, в котором будет три разрядных слагаемых.

11 слайд Описание слайда:

12 слайд Описание слайда:

Вывод: Каждое разрядное слагаемое является «представителем» своего разряда данного натурального числа.

ВНИМАНИЮ УЧИТЕЛЕЙ: хотите организовать и вести кружок по ментальной арифметике в своей школе? Спрос на данную методику постоянно растёт, а Вам для её освоения достаточно будет пройти один курс повышения квалификации (72 часа) прямо в Вашем личном кабинете на сайте «Инфоурок».

Пройдя курс Вы получите: — Удостоверение о повышении квалификации; — Подробный план уроков (150 стр.); — Задачник для обучающихся (83 стр.

); — Вводную тетрадь «Знакомство со счетами и правилами»; — БЕСПЛАТНЫЙ доступ к CRM-системе, Личному кабинету для проведения занятий; — Возможность дополнительного источника дохода (до 60.000 руб. в месяц)!

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Замена числа суммой разрядных слагаемых. Видеоурок. Математика 3 Класс

На этом уроке вы узнаете, как заменять трёхзначные числа суммой разрядных слагаемых. В рамках урока мы рассмотрим разрядный состав трёхзначных чисел, повторим наименование разрядов.

Для закрепления знаний решим много примеров, задач, заданий. Вы будете знать, что такое разрядные слагаемые, как найти сумму разрядных слагаемых.

Научитесь правильно раскладывать трёхзначные числа на разрядные составляющие и сможете проверить правильность указанных сумм.

А) По таблице 1 установите, какие числа записаны.

3) В третьем числе три сотни и четыре единицы. Получаем число 304.

Б) Запишите получившиеся числа в виде суммы слагаемых.

Решение

a54e40ba8237bcb39e5628a8e8bd2fc0 dbcd38661c2fa15cec63050dfa856971 200ec79f4bed43f6fa6d4390eec49d0c

90e46d7f446fa2f23374ef924eda55e8

2) Во втором числе девять сотен и семь десятков.

103ac93d0ed6cb8009f298f4b8a040d7

3) В числе триста сорок шесть будет три слагаемых.

4603b91a2f8b43b38d38a8efcc6f6c60

4) Заменим последнее число суммой разрядных слагаемых.

f641bf342adb2a7341145e4fa198eb97

Проверьте, все ли суммы являются суммами разрядных слагаемых (см. Рис. 1).

1ce646db3e1a2efcc784d472df28d759

Рис. 1. Иллюстрация к задаче

Решение

1) В первой сумме шестьсот – это разряд сотен, шесть сотен, сорок – это четыре десятка и пять – единицы. Можно сделать вывод о том, что первая сумма является суммой разрядных слагаемых.

2) 600 – шесть сотен, 300 – три сотни, 9 – девять единиц. Один и тот же разряд записали с помощью двух слагаемых. Следовательно, это не сумма разрядных слагаемых.

3) 800 – восемь сотен, 20 – два десятка, разряд единиц отсутствует. Данная сумма – это сумма разрядных слагаемых.

4) Первое слагаемое 960 можно представить в виде двух слагаемых: 900 – девять сотен и 60 – шести десятков. Поэтому данная сумма не является суммой разрядных слагаемых.

735830cd5847ec5e7e500cbe94864338

6) Последняя сумма – это сумма разрядных слагаемых потому, что 800 – восемь сотен, а 2 – две единицы, разряд десятков отсутствует.

Проверьте, правильно ли заменили суммы числами (схемы 1, 2, 3).

84253d956fdae61b1154a6fa407c44cd

1) 400 – четыре сотни, а 20 – два десятка. В сумме получиться 420. Следовательно, ответ 402 неправильный.

2) 600 – шесть сотен, 30 – три десятка и 7 – семь единиц. В сумме получиться 637. Ответ на схеме 2 записан правильно.

3) На схеме 3 видно, что 500 – это пять сотен, а 8 – это восемь единиц. Так сумма должна быть 508, значит, ответ 580 записан неверно.

Список литературы

Домашнее задание

Проверьте, правильно ли указана сумма разрядных слагаемых. а) б) в) г)

Рекомендованные ссылки на ресурсы сети Интернет

Классы и разряды чисел-математика | Таблица классов и разрядов

Для записи чисел люди придумали десять знаков, которые называются цифрами. Это: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

С помощью десяти цифр можно записать любое натуральное число.

Натуральные числа

От количества знаков (цифр) в числе зависит его название:

Запомните! Каждая цифра в записи многозначного числа занимает определённое место — позицию.

Разрядность чисел

Разряд — это место (позиция), на котором в записи числа стоит цифра.

81769de37c052295d740bc6b26125984

Одна и та же цифра в записи числа может иметь разные значения в зависимости от того, в каком разряде она стоит.

Разряды отсчитываются с конца числа.

Разряд единиц — это самый младший разряд, которым заканчивается любое число.

Цифра «5» — означает «5» единиц, если пятёрка стоит на последнем месте в записи числа (в разряде единиц).

Разряд десятков — это разряд, который стоит перед разрядом единиц.

Цифра «5» — означает «5» десятков, если она стоит на предпоследнем месте (в разряде десятков).

Разряд сотен — это разряд, который стоит перед разрядом десятков. Цифра «5» означает «5» сотен, если она стоит на третьем месте от конца числа (в разряде сотен).

Запомните! Если в числе отсутствует какой-либо разряд, то в записи числа на его месте будет стоять цифра «0» (ноль).

Пример. В числе «807» содержится 8 сотен, 0 десятков и 7 единиц — такая запись называется разрядным составом числа.807 = 8 сотен 0 десятков 7 единиц

Читать также: Как делить столбиком

Каждые 10 единиц любого разряда образуют новую единицу более высокого разряда. Например, 10 единиц образуют 1 десяток, а 10 десятков образуют 1 сотню.

703077c7b54a2f4dbebd8f9a12513c77

Таким образом, значение цифры от разряда к разряду (от единиц к десяткам, от десятков к сотням) увеличивается в 10 раз. Поэтому система счёта (счисления), которую мы используем, называется десятичной системой счисления.

Классы и разряды

В записи числа разряды, начиная справа, группируются в классы по три разряда в каждом.

fd959f209af97dfe256e0f4e49c68b5e

Класс единиц или первый класс — это класс, который образуют первые три разряда (справа от конца числа): разряд единиц, разряд десятков и разряд сотен.

ЧислаКласс единиц (первый класс)СотниДесяткиЕдиницы
6 6
34 3 4
148 1 4 8

Класс тысяч или второй класс — это класс, который образуют следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч.

ЧислаКласс тысяч (второй класс)Класс единиц (первый класс)Сотни тысячДесятки тысячЕдиницы тысячСотниДесяткиЕдиницы
5 234 5 2 3 4
12 893 1 2 8 9 3
356 149 3 5 6 1 4 9

Напоминаем, что 10 единиц разряда сотен (из класса единиц) образуют одну тысячу (единицу следующего разряда: единицу тысяч в классе тысяч).10 сотен = 1 тысяча

Класс миллионов или третий класс — это класс, который образуют следующие три разряда: единицы миллионов, десятки миллионов и сотни миллионов.

Единица разряда миллионов — это один миллион или тысяча тысяч (1 000 тысяч). Один миллион можно записать в виде числа «1 000 000».

Читать также: Сложение в столбик

ЧислаКласс миллионов (третий класс)Класс тысяч (второй класс)Класс единиц (первый класс)СотниДесяткиЕдиницыСотниДесяткиЕдиницыСотниДесяткиЕдиницы
8 345 216 8 3 4 5 2 1 6
93 785 342 9 3 7 8 5 3 4 2
134 598 721 1 3 4 5 9 8 7 2 1

Как прочитать многозначное число

На нашем сайте для проверки своих результатов вы можете воспользоваться калькулятором разложения числа на разряды онлайн.Важно!

Чтобы легче запомнить, как читать и записывать многозначные числа, советуем использовать выше приведённую «Таблицу классов и разрядов».

Сумма разрядных слагаемых натурального числа

Представленная статья посвящена интересной теме о натуральных числах. Для того, чтобы выполнять некоторые действия, необходимо представлять исходные выражения как сложение нескольких чисел – другим языком, раскладывать числа по разрядам. Обратный процесс также очень важен для решения упражнений и задач.

В данном разделе детально рассмотрим типичные примеры для лучшего усвоения информации. Мы также научимся преобразовывать натуральные числа и записывать их в другом виде.

Исходя из названия статьи, можно сделать вывод, что этот параграф посвящен таким математическим терминам, как «сумма» и «слагаемые». Перед тем, как приступить к изучению данной информации, следует подробно изучить тему, чтобы иметь понятие о натуральных числах.

Приступим к работе и рассмотрим основные понятия о разрядных слагаемых.

Разрядные слагаемые – это определенные числа, которые состоят из нулей и единственной цифры, отличной от нуля. Натуральные числа 5, 10, 400, 200относятся к данной категории, а числа 144, 321, 5 540, 16 441 – не относятся.

Следует помнить, что все разрядные слагаемые числа содержат разное количество знаков в своей записи.

Сумма разрядных слагаемых натурального числа равна этому числу.

Перейдем к понятию разрядных слагаемых.

Разрядные слагаемые– это такие натуральные числа, в записи которых содержится цифра, отличная от нуля. Количество чисел должно быть равно количеству цифр, не равных нулю. Все слагаемые числа могут записываться с различным количеством знаков. Если мы раскладываем число по разрядам, то сумма слагаемых числа всегда будет равна этому числу.

Проанализировав понятие, можно сделать вывод, что однозначные и многозначные числа (полностью состоящие из нулей за исключением первой цифры) нельзя представить в качестве суммы. Это происходит потому, что данные числа сами будут разрядными слагаемыми для каких-то чисел. За исключением данных чисел, все остальные примеры могут раскладываться на слагаемые.

Как раскладывать числа?

Чтобы разложить число как сумму разрядных слагаемых, необходимо вспомнить, что натуральные числа связаны с количеством некоторых предметов. В записи числа разряды зависят от количества единиц, десятков, сотен, тысяч и так далее.

Если вы возьмем, например, число 58, то может отметить, что он отвечает 5 десяткам и 8 единицам. Число 134 400 соответствует 1 сотне тысяч, 3 десяткам тысяч, 4тысячам и 4 сотням. Можно представить эти числа в виде равенств – 50+8=58 и 134 400=100 000+30 000+4 000+400.

В данных примерах мы наглядно увидели, как можно разложить число в виде разрядных слагаемых.

Смотря на этот пример, мы сможем любое натуральное число представить в виде суммы разрядных слагаемых.

Приведем еще один пример. Представим натуральное число 25 в виде суммы разрядных слагаемых. Число 25 соответствует 2 десяткам и 5 единицам, поэтому 25=20+5. А вот сумма 17+8 не является суммой разрядных слагаемых числа 25, так как в ней не может быть двух чисел, состоящих из одинакового количества знаков.

Мы разобрали основные понятия. Разрядные слагаемые получили свое название из-за того, что каждое принадлежит к определенному разряду.

Как найти натуральное число, если известна сумма разрядных слагаемых?

Для того, чтобы разобрать данный пример, проанализируем обратную задачу. Представим, что нам известна сумма разрядных слагаемых. Нам необходимо найти данное натуральное число.

Например, сумма 200+30+8 разложено по разрядам числа 238, а сумма 3 000 000+20 000+2 000+500 соответствует натуральному числу 3 022 500. Таким образом, мы легко можем определить натуральное число, если нам известна его сумма резервных слагаемых.

Еще один способ нахождения натурального числа – это сложение в столбцах разрядных слагаемых. Данный пример не должен вызвать у вас сложности во время выполнения. Поговорим об этом подробнее.

Необходимо определить исходное число, если известна сумма разрядных слагаемых 200 000+40 000+50+5. Перейдем к решению. Необходимо записать числа 200 000, 40 000, 50 и 5 для сложения в столбик:
a62e3cd3461c5f8664b0292541e24dc7

Осталось сложить числа по столбцам. Для этого нужно помнить, что сумма нулей равна нулю, а сумма нулей и натурального числа равна этому натуральному числу.

d0eb6a98004236900d0d634ba0a5a775

Выполнив сложение, мы получим натуральное число 240 055, сумма разрядных слагаемых которого имеет вид 200 000+40 000+50+5.

Поговорим еще об одном моменте. Если мы научимся раскладывать числа и представлять их в виде суммы разрядных слагаемых, то мы также сможем представлять натуральные число в виде суммы слагаемых, не являющихся разрядными.

Разложение по разрядам числа 725 будет представлено как 725=700+20+5, а сумму разрядных слагаемых 700+20+5 можно представить как (700+20)+5=720+5 или 700+(20+5)=700+25, или (700+5)+20=705+20.

Иногда сложные вычисления можно немного упростить. Рассмотрим еще небольшой пример для закрепления информации.

Выполним вычитание чисел 5 677 и 670. Для начала представим число 5677 в виде суммы разрядных слагаемых: 5 677=5 000+600+70+7. Выполнив действие, мы можем сделать вывод, что. сумме (5 000+7)+(600+70)=5 007+670. Тогда 5 677−670=(5 007+670)−670=5 007+(670−670)=5 007+0=5 007.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Что такое разрядные слогаемые

dbc362435681625f75a63de0841ebf37

Разрядные слагаемые – это сумма чисел с разной разрядностью.

Возьмем на примере, число 86. Разложим данное число на десятки и единицы. Получаем: 86 = 80 + 6 = 8 * 10 + 6 * 1. Отсюда видим, что число 86 состоит из 8 десятков и 6 единиц. Это и есть разрядные слагаемые.

Числа 1, 10, 100, 1000 и так далее – это разрядные единицы.

Запишем разделение разрядных слагаемых:

Любое натуральное число можно разделить на разрядные слагаемые и записать в виде суммы.

Примеры разрядных слагаемых:

Рассмотрим пример определения разрядных слагаемых числа 92586

Сделаем вывод, что любое число можно разделить на разрядные слагаемые. Разрядные слагаемые помогают при решении более сложных примеров и задач.

ec7675f5d330fbf6aadbca7ca616e6a6Разрядное слагаемое — это любое натуральное многозначное число, которое можно представить в виде суммы разрядных слагаемых. Разложить число на разрядные слагаемые значит разделить число на разряды: единицы, десятки, сотни, тысячи, десятки тысяч и так далее.Примеры разложения чисел на разрядные слагаемые:123 = 100 + 20 + 3, где 100 — сотни, 20 — десятки, а 3 — единицы.Более сложный пример с большим числом разрядов:16 458 = 10 000 + 6 000 + 400 + 50 + 8, здесь 10 000 — десятки тысяч, 6 000 — тысячи, 400 — сотни, 50 — десятки, 8 — единицы.

Как написать хороший ответ?

Разрядные слагаемые

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

на главную Найти репетитора Поддержать сайт Разряды и классы Разрядные слагаемые

Представление числа в виде:

называется разложением числа на разрядные слагаемые или суммой разрядных слагаемых.

356 = 3 сотни + 5 десятков + 6 единиц = 3 · 100 + 5 · 10 + 6 = 300 + 50 + 6

8 092 = 8 тысяч + 0 сотен + 9 десятков + 2 единицы = 8 · 1 000 + 0 · 100 + 9 · 10 + 2 = 8 000 + 90 + 2

Числа 1, 10, 100, 1000 и т.д. — называются разрядными единицами. Так, 1 — это единица разряда единиц; 10 — единица разряда десятков; 100 — единица разряда сотен и т.д.

Часто в заданиях требуется не только разложить число на разрядные слагаемые, но и определить количество всех единиц какого-либо разряда. В этом случае советуем сделать подробный разбор числа.

Пример подробного разбора многозначного числа «2 038 479» (два миллиона тридцать восемь тысяч четыреста семьдесят девять).

2 038 479 = 2 · 1 000 000 + 0 · 100 000 + 3 · 10 000 + 8 · 1 000 + 4 · 100 + + 7 · 10 + 9 = 2 000 000 + 30 000 + 8 000 + 400 + 70 + 9

Советуем обратить особое внимание на данную тему, так как умение раскладывать числа на разрядные слагаемые поможет вам при устном счёте и решении примеров с многозначными числами.

Для проверки своих результатов вы также можете воспользоваться нашим калькулятором разложения числа на разрядные слагаемые онлайн.

Обозначение натуральных чисел (Разряды и классы в записи числа)

1. Организационный этап.

Здравствуйте. Прежде чем мы приступим к уроку, хотелось бы узнать, как вы настроены к работе на уроке.

2. Актуализация опорных знаний:

На доске записано число (например, 789 540).

— Прочитайте число. Назовите, пожалуйста, цифру, которая показывает количество единиц числа, а цифру, которая показывает количество десятков. А количество сотен, какая цифра показывает? Молодцы!

Сегодня на уроке мы поговорим о разрядах и классах в записи числа. Узнаем такие понятия как разряд числа, разрядные единицы, разрядные слагаемые, рассмотрим классификацию классов в записи числа, а также научимся правильно читать натуральные числа.

Мы уже знаем, что натуральные числа — это числа, которые используют при счёте. Любое натуральное число можно записать с помощью десяти цифр.

Способ записи чисел, которым мы пользуемся, называется десятичной позиционной системой счисления. Значение цифры зависит от ее места (позиции) в записи числа.

Кроме натуральных чисел мы знаем еще число 0 (нуль). При счёте число 0 (нуль) не используется, а означает оно «ни одного». Поэтому число 0 не является натуральным!

числа 23, 58, 66 — двузначные, точно также можно сказать и о трехзначных числах, четырехзначных и т. д.

числа 321, 555, 878 — трехзначные,

числа 2100, 5350, 9999 — четырехзначные

Многозначные натуральные числа — это натуральные числа, запись которых состоит из двух или трех или четырех и т. д. знаков. Говоря на математическом языке, многозначные натуральные числа — это двузначные, трехзначные, четырехзначные и т. д. числа.

Позиция (место), на которой стоит цифра в записи натурального числа, называется разрядом. Разряды называют, начиная с конца числа, т. е. справа налево. Рассмотрим, для наглядности число 563.

Первая цифра справа в записи числа называется цифрой первого разряда (в данном числе это цифра 3), вторая цифра, которая стоит следующей слева от первой цифры — называется цифрой второго разряда (в записанном числе это цифра 6), третья цифра — называется цифрой третьего разряда (здесь это цифра 5). Первый разряд называют также разрядом единиц, второй разряд — разрядом десятков, третий разряд — разрядом сотен и т. д.

Одна и та же цифра в записи числа может иметь разные значения в зависимости от того, в каком разряде она стоит. Если в числе отсутствует какой-либо разряд, то в записи числа на его месте будет стоять цифра 0 (нуль).

Возьмем, например число 505. Здесь цифра 5 повторяется. Одна цифра 5 стоит в первом разряде, это значит, что в числе 5 единиц, вторая цифра 5 стоит в третьем разряде и обозначает, что в числе 5 сотен. Цифра 0 в числе 505 обозначает, что в числе отсутствует разряд десятков.

Рассмотрим число 8503. Оно состоит из 8 — ми тысяч, 5 — ти сотен, 0 десятков и 3 — ех единиц. Т. е. его можно записать следующим образом:

8503 = 8000 + 500 + 0 + 3

Числа 8000, 500, 0 и 3 называются разрядными слагаемыми числа 8503.

Числа 1, 10, 100 и т. д. называются разрядными единицами:

1 — единица первого разряда — разряда единиц,

10 — единица второго разряда — разряда десятков,

100 — единица третьего разряда — разряда сотен и т. д. С их помощью натуральное число записывается в виде разрядных слагаемых.

Каждые 10 единиц любого разряда образуют новую единицу более высокого разряда. Например, 10 единиц образуют 1 десяток, а 10 десятков образуют 1 сотню. Посмотрим это на рисунке: мы видим 1 шарик — обозначим его как 1 единицу, если соединить 10 шариков — то они уже образуют 1 десяток, а 10 десятков шариков уже составят 1 сотню.

Первая цифра слева в записи натурального числа называется цифрой высшего разряда. Так как запись натурального числа не может начинаться с нуля, то цифра высшего разряда всегда отлична от нуля.

В записи числа разряды, начиная справа, группируются в классы по три разряда в каждом. Класс единиц, класс тысяч, класс миллионов. Есть названия и для следующих классов — миллиарды, триллионы, квадрильоны и т. д.

Класс единиц или первый класс — это класс, который образуют первые три разряда (справа от конца числа): разряд единиц, разряд десятков и разряд сотен.

Например, числа 6, 34, 148. Все цифры в записи данных чисел стоят в классе единиц.

Класс тысяч или второй класс — это класс, который образуют следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч.

Например, числа 5234, 12 803, 356 149. Три цифры справа в этих числах стоят в классе единиц, а остальные — в классе тысяч.

Класс миллионов или третий класс — это класс, который образуют следующие три разряда: единицы миллионов, десятки миллионов и сотни миллионов.

Например, число 289 350 140. Первая тройка цифр, стоят в классе единиц, вторая тройка цифр — в классе тысяч, третья тройка цифр стоит в классе миллионов.

Чтобы прочитать многозначное число, мы должны разбить его на классы и затем назвать слева направо количество единиц каждого класса, добавляя название классов. Если в каком — либо из классов стоят 3 нуля, то единицы и название этого класса не произносят.

Например, прочитаем число 134 590 720. Для этого поставим цифры числа в таблицу с соответствующим им разрядом и классом.

Цифра 0 относится к разряду единиц, 2 — к разряду десятков, 7 — к разряду сотен, цифра 0 относится к разряду единиц тысяч, 9 — к десяткам тысяч, 5 — к сотням тысяч.

Дальше цифра 4, она относится к разряду единиц миллионов, 3 — к десяткам миллионов и цифра 1 относится к разряду сотен миллионов. Теперь прочитаем число: сто тридцать четыре миллиона пятьсот девяносто тысяч семьсот двадцать.

Аналогично попробуем прочитать число 418 000 547. Занесем цифры в табличку. 7 — разряд единиц, 4 — разряд десятков, 5 — разряд сотен. Дальше следуют 3 нуля, они соответственно относятся к разрядам единиц, десятков, сотен класса тысяч.

Затем идет цифра 8, она относится к разряду единиц миллионов, 1 — к разряду десятков миллионов и цифра 4 относится к разряду сотен миллионов. Читаем число: «четыреста восемнадцать миллионов пятьсот сорок семь».

Класс тысяч не назвали, так как там стоят три нуля.

4. Этап обобщения и закрепления нового материала.

Итак, сделаем основные выводы:

Сегодня на уроке мы узнали, что разряд числа — это позиция (место), на которой стоит цифра в записи натурального числа. Научились расписывать числа с помощью разрядных слагаемых. Рассмотрели, какие классы числа существуют, а также научились правильно читать натуральные числа.

Для закрепления материала ответьте на вопросы:

Какие числа называют однозначными, двузначными, трехзначными? Назовите разряды класса тысяч. Назовите первые пять классов в записи натуральных чисел. Как читают многозначные числа?

5. Рефлексия.

Хотелось бы узнать, понравился ли вам урок? Что было не понятным на уроке? Что еще бы вы хотели узнать?

Источник

Мир познаний
Добавить комментарий

Adblock
detector