- Сумма ряда
- Содержание
- Определение
- Сходимость числовых рядов
- Необходимый признак сходимости ряда
- Примеры
- См. также
- Обобщения числовых рядов
- Признаки сходимости
- Литература
- Примечания
- Полезное
- Смотреть что такое «Сумма ряда» в других словарях:
- Числовые ряды: определения, свойства, признаки сходимости, примеры, решения
- Базовые тезисы
- Особенности сходящихся рядов
- Необходимое условие для определения, является ли ряд сходящимся
- Как определить сходимость знакоположительного ряда.
- Как сравнивать ряды
- Признак Даламбера
- Радикальный признак Коши
- Интегральный признак Коши
- Признак Раабе
- Исследование на абсолютную сходимость
- Расходимость знакопеременных рядов
- Признаки для условной сходимости
- Признак Лейбница
- Признак Абеля-Дирихле
- Нахождение суммы числового ряда. Первая часть.
- Первый способ упрощения формулы для частичной суммы.
- Второй способ упрощения формулы для частичной суммы.
- Третий способ упрощения формулы для частичной суммы.
- Сумма ряда
- Понятие суммы ряда
- Вычисление суммы ряда почленным дифференцированием
Сумма ряда
Содержание
Определение
Пусть — числовой ряд. Число
называется n-ой частичной суммой ряда
.
Сумма (числового) ряда — это предел частичных сумм , если он существует и конечен. Таким образом, если существует число
, то в этом случае пишут
. Такой ряд называется сходящимся. Если предел частичных сумм не существует или бесконечен, то ряд называется расходящимся.
Сходимость числовых рядов
Свойство 1. Если ряд
(1.1)
сходится и его сумма равна S, то ряд
(1.2)
где c — произвольное число, также сходится и его сумма равна cS. Если же ряд (1.1) расходится и с ≠ 0, то ряд расходится.
Свойство 2. Если сходится ряд (1.1) и сходится ряд
,
а их суммы равны и
соответственно, то сходятся и ряды
,
причём сумма каждого равна соответственно .
Необходимый признак сходимости ряда
Ряд может сходиться лишь в том случае, когда член
(общий член ряда) стремится к нулю:
Это необходимый признак сходимости ряда (но не достаточный!). Если же общий член ряда не стремится к нулю — это достаточный признак расходимости.
Примеры
См. также
Обобщения числовых рядов
Признаки сходимости
Литература
Примечания
Полезное
Смотреть что такое «Сумма ряда» в других словарях:
Бесконечная сумма — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
Правильная часть ряда Лорана — Ряд Лорана двусторонне бесконечный степенной ряд по целым степеням (z − a), то есть ряд вида Этот ряд понимается как сумма двух рядов: правильная часть ряда Лорана и главная часть ряда Лорана. При этом, ряд Лорана считается сходящимся тогда… … Википедия
ФЕЙЕРА СУММА — средние арифметические частных сумм ряда Фурье по тригонометрич. системе где ak, bk, коэффициенты Фурье функции f. Если функция f непрерывна, то сходятся к f(х)равномерно; сходятся к f(х) в метрике L. Если f принадлежит классу функций,… … Математическая энциклопедия
Ряд (математика) — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
Ряд (математич.) — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
Числовые ряды — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
РЯДЫ — Многие задачи в математике приводят к формулам, содержащим бесконечные суммы, например, или Такие суммы называются бесконечными рядами, а их слагаемые членами ряда. (Многоточие означает, что число слагаемых бесконечно.) Решения сложных… … Энциклопедия Кольера
1 − 2 + 3 − 4 + … — Первые 15000 частичных сумм ряда 0 + 1 − 2 + 3 − 4 + … В математике, 1 − 2 + 3 − 4 + … это числовой ряд, слагаемые которого по модулю представляют собой последовательные натуральные … Википедия
СТЕПЕННОЙ РЯД — 1)С. р. по одному комплексному переменному z функциональный ряд вида где a центр ряда, bk его коэффициенты, bk(z a)k члены ряда. Существует число r, называемое радиусом сходимости С. р. (1) и определяемое по формуле Коши Адамара такое, что при |z … Математическая энциклопедия
Числовые ряды: определения, свойства, признаки сходимости, примеры, решения
Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.
Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.
Базовые тезисы
a k является общим или k –ым членом ряда.
Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.
Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.
Мы доказали, что числовой ряд сходится.
Мы доказали, что числовой ряд расходится.
Ряд ∑ k = 1 ∞ b k знакопеременный, так как в нем множество чисел, отрицательных и положительных.
Второй вариант ряд – это частный случай третьего варианта.
Приведем примеры для каждого случая соответственно:
Для третьего варианта также можно определить абсолютную и условную сходимость.
Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.
Подробно разберем несколько характерных вариантов
Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.
Особенности сходящихся рядов
Проанализируем свойства для определенных случаев
Разложим исходный вариант:
Необходимое условие для определения, является ли ряд сходящимся
Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0
Как определить сходимость знакоположительного ряда.
Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.
Как сравнивать ряды
Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.
Первый признак
Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.
Второй признак
Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.
Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.
Третий признак
Рассмотрим третий признак сравнения.
Признак Даламбера
Признак Даламбера справедлив в том случае, если предел бесконечен.
Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.
Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = » open=» ∞ ∞ = lim k → + ∞ 2 k + 1 ‘ 2 k ‘ = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0
Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 ( k + 1 ) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 1
Ряд является сходящимся.
Следовательно, ряд является расходящимся.
Радикальный признак Коши
Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.
Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.
Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 ( 2 k + 1 ) k на сходящимся.
Интегральный признак Коши
, то в случае, если несобственный интеграл ∫ a + ∞ f ( x ) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.
При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.
Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.
Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.
Признак Раабе
Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.
Исследование на абсолютную сходимость
Расходимость знакопеременных рядов
Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.
Признаки для условной сходимости
Признак Лейбница
Ряд условно сходится.
Признак Абеля-Дирихле
∑ k = 1 + ∞ u k · v k сходится в том случае, если < u k >не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.
Нахождение суммы числового ряда. Первая часть.
В теме про основные понятия числовых рядов было указано определение суммы ряда. Вот оно:
Если понятие «частичная сумма» вызывает вопросы, то советую посмотреть раздел про частичную сумму ряда, обратив внимание на пример №4. В этом примере подробно раскрывается суть частичной суммы и остатка.
Для нахождения суммы ряда нередко удобно использовать и такое свойство:
Вопрос в следующем: чему равна эта сумма? Если в частичных суммах мы станем брать чётное количество слагаемых, они попарно сократятся:
Если мы станем брать нечётное количество слагаемых (1, 3, 5 и т.д.), то сумма станет равна 1:
Здесь стоит обратить внимание вот на что: следует различать случаи, когда предел равен бесконечности (см. следующий пример №2), и когда предела попросту не существует. Хотя и в том и в другом случаях ряд будет расходиться.
Ответ: ряд расходится.
Эту сумму можно записать в более коротком виде. Дело в том, что последовательность 4, 7, 10, 13 и т.д. есть арифметическая прогрессия, первый член которой равен 4, а разность равна 3. Сумма первых n членов этой прогрессии такова:
Если немного выйти за рамки данной темы, то стоит отметить, что расходимость этого ряда легко доказывается с помощью необходимого признака сходимости.
Ответ: ряд расходится.
то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.
Приравниваем числители дробей в левой и правой частях полученного равенства:
Первый способ упрощения формулы для частичной суммы.
Давайте распишем частичную сумму, учитывая полученное разложение каждого элемента:
Как видите, все слагаемые этой суммы сокращаются, – кроме первого и последнего:
Однако можно ли считать вышеуказанные рассуждения строгим доказательством? Полагаю, что в общем случае нет, и поясню почему. Дело в том, что мы должны «увидеть» (как любят писать некоторые авторы – «легко увидеть»), что слагаемые сокращаются. А если мы «увидим» не все слагаемые, которые останутся после сокращения? Где гарантии, что мы сократим именно то, что нужно? Нет гарантий. Понятно, что в случае рассматриваемой конкретной задачи всё тривиально и очевидно, но далеко не все частичные суммы рядов имеют такую простую структуру.
Второй способ упрощения формулы для частичной суммы.
Этот способ основан на свойстве, записанном в начале страницы. По сути, он схож с предыдущим, – разница лишь в применении уже готовой теоремы, доказанной нами ранее. Вернёмся к записи общего члена ряда:
Третий способ упрощения формулы для частичной суммы.
Честно говоря, я сам предпочитаю большей частью именно этот способ 🙂 Давайте запишем частичную сумму в сокращённом варианте:
Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство оформим более компактно:
Как мы получили преобразованную сумму? показать\скрыть
Таким образом, частичную сумму можно представить в следующем виде:
Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:
Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.
Сумма ряда
Содержание:
Понятие суммы ряда
Постановка задачи. Найти сумму ряда
где — целые числа.
План решения. Суммой ряда называется предел
последовательности его частичных сумм
, т.е.
где
1. По условию задачи
Если корни знаменателя различаются на целое число, т.е.
где
— натуральное число, то члены последовательности частичных сумм ряда
легко найти, так как в выражении
многие слагаемые взаимно уничтожаются.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
2. Разлагаем общий член ряда на элементарные дроби:
и выписываем несколько членов ряда так, чтобы было видно, какие слагаемые сокращаются при вычислении частичных сумм ряда.
3. Находим -ю частичную сумму ряда:
,
сократив соответствующие слагаемые.
4. Вычисляем сумму ряда по формуле (1)
и записываем ответ.
Пример:
Решение:
1. Корни знаменателя и
различаются на целое число, т.е.
Следовательно, члены последовательности частичных сумм ряда
легко найти, так как в выражении
многие слагаемые взаимно уничтожаются.
2. Разлагаем общий член ряда на элементарные дроби
и выписываем несколько членов ряда:
3. Сокращая все слагаемые, какие возможно, находим -ю частичную сумму ряда:
4. Вычисляем сумму ряда по формуле (1):
Ответ:
Возможно вам будут полезны данные страницы:
Вычисление суммы ряда почленным интегрированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
План решения.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если , ряд расходится. Если
, ряд сходится условно (по признаку Лейбница). Следовательно, область сходимости определяется неравенствами
2. Делаем в исходном ряде замену , получим степенной ряд
с областью сходимости .
3. Известна формула для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке
, целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем
Заметим, что так как ряд (1) сходится в граничной точке , то сумма ряда непрерывна в этой точке (справа). Следовательно,
6. Вычисляем интеграл, делаем замену на
и записываем ответ: сумму ряда и область его сходимости.
Замечание. Если ряд имеет вид
то применяем теорему о почленном интегрировании степенного ряда дважды или разлагаем дробь на элементарные:
и вычисляем сумму каждого ряда почленным интегрированием.
Пример:
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
В граничных точках при ряд расходится, при
ряд сходится условно.
Следовательно, данный ряд сходится при всех .
2. Сделаем замену Получим геометрический ряд (1) с областью сходимости
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, и используя формулу (4), получаем
Заметим, что так как ряд (1) сходится в граничной точке , то его сумма непрерывна в этой точке (справа). Следовательно, формула (5) справедлива при всех
.
6. Заменяя на
, получаем при
Ответ.
Вычисление суммы ряда почленным дифференцированием
Постановка задачи. Найти сумму функционального ряда вида
и указать область сходимости ряда к этой сумме.
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством
Если , ряд расходится (не выполнено необходимое условие сходимости). Следовательно, область сходимости определяется неравенствами
.
2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов
Следовательно, достаточно найти суммы рядов
и
3. Известна формула для суммы членов бесконечно убывающей геометрической прогрессии
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (1), получаем
6. Вычисляем производную и делаем замену на
. Записываем ответ: сумму ряда и область его сходимости.
Замечание. Если ряд имеет вид
то вычисляем сумму трех рядов, причем при вычислении суммы ряда
применяем теорему о почленном дифференцировании степенного ряда дважды.
Пример:
и указать область сходимости ряда к этой сумме.
Решение:
1. Находим область сходимости ряда.
По признаку Коши интервал сходимости определяется неравенством . Отсюда
. В граничных точках
ряд расходится, так как не выполнено необходимое условие сходимости. Следовательно, ряд сходится в интервале
.
2. Делаем в исходном ряде замену и записываем его в виде суммы двух рядов
Следовательно, достаточно найти суммы рядов
3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии:
Следовательно, при всех
.
4. Кроме того, имеем очевидное равенство
5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (2), получаем
Заменяя на
, получим
Ответ.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.