Что такое сумма углов выпуклого n угольника

Содержание
  1. Теорема о сумме углов многоугольника
  2. Содержание
  3. Доказательство
  4. Замечание
  5. Примечания
  6. См. также
  7. Полезное
  8. Смотреть что такое «Теорема о сумме углов многоугольника» в других словарях:
  9. Выпуклый многоугольник
  10. Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)
  11. Задача:
  12. Углы многоугольника
  13. Сумма внутренних углов
  14. Сумма внешних углов
  15. Сумма углов n угольника
  16. «Управление общеобразовательной организацией: новые тенденции и современные технологии»
  17. Описание презентации по отдельным слайдам:
  18. Библиотечно-библиографические и информационные знания в педагогическом процессе
  19. Охрана труда
  20. Охрана труда
  21. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  22. Общая информация
  23. Похожие материалы
  24. Цилиндры и цилиндрические поверхности
  25. Введение в логику
  26. Портреты учёных математиков
  27. Прямая пропорциональность
  28. Вычисление объема прямоугольного параллелепипеда
  29. Пропорциональность величин
  30. Стандартный вид многочлена
  31. Вам будут интересны эти курсы:
  32. Оставьте свой комментарий
  33. Подарочные сертификаты
  34. Какой многоугольник называется выпуклым
  35. Что такое выпуклый многогольник
  36. Примеры
  37. Сумма углов выпуклого многоугольника
  38. Сумма внешних углов выпуклого многоугольника

Теорема о сумме углов многоугольника

Сумма углов n-угольника равна 180°(n-2).

Содержание

Доказательство

Доказательство проводится для случая выпуклого n-угольника

Пусть 3084cafa1596f48d442b0c98784fee66— данный выпуклый многоугольник и n > 3. Тогда проведем из одной вершины к противоположным вершинам n-3 диагонали: 199b8101f281c31ffd257f7345609c57. Так как многоугольник выпуклый, то эти диагонали разбивают его на n — 2 треугольника: 431fb44e7cb3d6ea6bf45e035517de18. Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов в каждом треугольнике равна 180°, а число этих треугольников есть n-2. Следовательно, сумма углов n-угольника равна 180°(n-2). Теорема доказана.

Замечание

Для невыпуклого n-угольника сумма углов также равна 180°(n-2). Доказательство аналогично, но использует в дополнение лемму о том, что любой многоугольник может быть разрезан диагоналями на треугольники.

Примечания

См. также

Полезное

Смотреть что такое «Теорема о сумме углов многоугольника» в других словарях:

Теорема о сумме углов треугольника — Треугольник Теорема о сумме углов треугольника классическая теорема евклидовой геометрии. Утверждает, что … Википедия

Теорема Брахмагупты — … Википедия

Треугольник — У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Прямоугольник — Прямоугольник параллелограмм, у которого все углы прямые (равны 90 градусам). Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу … Википедия

Многоугольник — У этого термина существуют и другие значения, см. Многоугольник (значения). Примеры многоугольников Многоугольник это геометрическая фигура, обычно оп … Википедия

Четырёхугольник — ЧЕТЫРЁХУГОЛЬНИКИ ┌─────────────┼────────────┐ невыпуклый выпуклый самопересекающийся … Википедия

Источник

Выпуклый многоугольник

Многоугольник называется выпуклым, если он по одну сторону от каждой прямой, которая проходит через две его смежные вершины. На рисунке ниже представлен выпуклый многоугольник:

vipukl mnogougolnik primer

А следующий рисунок иллюстрирует невыпуклый многоугольник:

nevipukliy mnogougolnik primer

Углом выпуклого многоугольника при данной вершине будет называться угол, образованный сторонами этого многоугольника, сходящимися в данной вершине. Внешним углом выпуклого многоугольника в некоторой вершине называется угол смежный с внутренним углом многоугольника при данной вершине.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

Доказательство: рассмотрим выпуклый n-угольник. Чтобы найти сумму всех внутренних углов, соединим одну из вершин многоугольника с другими вершинами.

В результате получим (n-2) треугольника. Известно, что сумма углов треугольника равна 180 градусам. А так как их количество в многоугольнике (n-2), то сумма углов многоугольника равна 180˚ *(n-2). Это и требовалось доказать.

teorema summa uglov

Задача:

Найти сумму углов выпуклого a) пятиугольник б) шестиугольника в)десятиугольника.

Воспользуемся формулой для вычисления суммы углов выпуклого n-угольника.

Источник

Углы многоугольника

Внутренний угол многоугольника — это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.

ugly mnog

Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.

ugly mnog2

Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.

Сумма внутренних углов

Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.

где s — это сумма углов, 2d — два прямых угла (то есть 2 · 90 = 180°), а n — количество сторон.

Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:

ugly mnog4

Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d), то сумма углов всех треугольников будет равна произведению 2d на их количество:

Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.

Сумма внешних углов

Сумма внешних углов выпуклого многоугольника равна 360° (или 4d).

где s — это сумма внешних углов, 4d — четыре прямых угла (то есть 4 · 90 = 360°).

Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d), так как они являются смежными углами. Например, ∠1 и ∠2:

ugly mnog3

Источник

Сумма углов n угольника

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

presentation bg

Описание презентации по отдельным слайдам:

Описание слайда:

Сумма углов n-угольника
Теорема. Сумма углов выпуклого n-угольника равна 180o(n-2).
Доказательство. Из какой-нибудь вершины выпуклого n-угольника проведем все его диагонали. Тогда n-угольник разобьется на n-2 треугольника. В каждом треугольнике сумма углов равна 180о, и эти углы составляют углы n-угольника. Следовательно, сумма углов n-угольника равна 180о(n-2).

Описание слайда:

Второй способ доказательства
Теорема. Сумма углов выпуклого n-угольника равна 180o(n-2).
Доказательство 2. Пусть O какая-нибудь внутренняя точка выпуклого n-угольника A1…An. Соединим ее с вершинами этого многоугольника. Тогда n-угольник разобьется на n треугольников. В каждом треугольнике сумма углов равна 180о. Эти углы составляют углы n-угольника и еще 360о. Следовательно, сумма углов n-угольника равна 180о(n-2).

Описание слайда:

Упражнение 1
Чему равна сумма углов выпуклого: а) 4-угольника; б) 5-угольника; в) 6-угольника?
Ответ: а) 360о;
б) 540о;
в) 720о.

Описание слайда:

Упражнение 2
Чему равен внешний угол правильного: а) 3-угольника; б) 4-угольника; в) 5-угольника; г) 6-угольника?
Ответ: а) 120о;
б) 90о;
в) 72о;
г) 60о.

Описание слайда:
Описание слайда:

Упражнение 4
Чему равны углы правильного: а) треугольника; б) четырехугольника; в) пятиугольника; г) шестиугольника; д) восьмиугольника; е) десятиугольника; ж) двенадцатиугольника?
Ответ: а) 60о;
б) 90о;
в) 108о;
г) 120о;
д) 135о;
е) 144о;
ж) 150о.

Описание слайда:

Упражнение 5
Сумма трех углов выпуклого четырехугольника равна 300о. Найдите четвертый угол.
Ответ: 60о.

Описание слайда:

Упражнение 6
Углы выпуклого четырехугольника пропорциональны числам 1, 2, 3, 4. Найдите их.
Ответ: 36о, 72о, 108o, 144o.

Описание слайда:
Описание слайда:

Упражнение 8
Сумма углов выпуклого многоугольника равна 900o. Сколько у него сторон?
Ответ: 7.

Описание слайда:

Упражнение 9
Сколько сторон имеет правильный многоугольник, если каждый из его внешних углов равен: а) 36o; б) 24o?
Ответ: а) 10;
б) 15.

Описание слайда:

Упражнение 10
Чему равна сумма углов невыпуклого четырехугольника ABCD?
Ответ: 360о.

Описание слайда:

Упражнение 11*
Найдите сумму углов 1, 2, 3, 4, 5 пятиугольной звездочки, изображенной на рисунке.
Ответ: 180о.

Описание слайда:

Упражнение 12*
Какое наибольшее число острых углов может иметь выпуклый n-угольник?
Решение. Так как сумма внешних углов выпуклого многоугольника равны 360о, то у выпуклого многоугольника не может быть более трех тупых углов, следовательно, у него не может быть более трех внутренних острых углов.
Ответ. 3.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

placeholder

Курс профессиональной переподготовки

Библиотечно-библиографические и информационные знания в педагогическом процессе

placeholder

Курс повышения квалификации

Охрана труда

placeholder

Курс профессиональной переподготовки

Охрана труда

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Похожие материалы

Цилиндры и цилиндрические поверхности

Введение в логику

Портреты учёных математиков

Прямая пропорциональность

Вычисление объема прямоугольного параллелепипеда

Пропорциональность величин

Стандартный вид многочлена

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5437661 материал.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

placeholder

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

placeholder

Правительство направит регионам почти 92 миллиарда рублей на ремонт и оснащение школ

Время чтения: 1 минута

placeholder

Все школы РФ с 2023 года подключат к государственной информационной системе «Моя школа»

Время чтения: 1 минута

placeholder

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

placeholder

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

placeholder

В России стартует пилотный проект по реабилитации детей-инвалидов

Время чтения: 2 минуты

placeholder

Во всех педвузах страны появятся технопарки

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Какой многоугольник называется выпуклым

Что такое выпуклый многогольник

Выпуклым называют многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящий через две его соседние вершины.

Или же другой вариант определения:

Выпуклым называют многоугольник, в котором соблюдается следующее условие: если выбрать две произвольных точки, лежащих внутри фигуры, и соединить их отрезком, то все точки этого отрезка так же будут лежать внутри многоугольника.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Примеры

d41d8c 1602265264

Многоугольник \(М_1\) — выпуклый, а \(М_2\) — не выпуклый.

Сумма углов выпуклого многоугольника

9b35dd 2 1602265325

\(A_1A_2A_3. A_n\) — выпуклый многоугольник. Найдем сумму его углов:

\(\angle A_nA_1A_2,\;\angle A_1A_2A_3,\;\angle A_A_nA_1,\;. \)

Сумма внешних углов выпуклого многоугольника

43f339 3 1602265915

\(\angle OAD\) — внешний угол многоугольника ABCDE при вершине А. (смежный с \(\angle BAE\) )

\(180^\circ-A_1+180^\circ-A_2+. +180^\circ-A_n=n\cdot180^\circ-(A_1+A_2+. +A_n)=n\cdot180^\circ-(n-2)\cdot180^\circ=n\cdot180^\circ-n\cdot180^\circ+2\cdot180^\circ=360^\circ\)

Источник

Мир познаний
Добавить комментарий

Adblock
detector