- Что такое спин в физике: момент импульса, бозоны, фермионы
- Спин и момент импульса
- Спиновое квантовое число
- Бозоны и фермионы
- Что такое спин в физике
- Классификация элементарных частиц по спину
- Спин электрона — определение, классификация и примеры значений
- Что такое спин в физике
- Классификация элементарных частиц по спину
- Что такое суммарный спин
- Оглавление
- История
- Спиновое квантовое число
- Спин элементарных частиц
- Спин составных частиц
- Спин атомов и молекул
- Связь между спином и статистикой
- Спиновый магнитный момент
- Ориентация спина
- Квантовое число проекции спина и мультиплетность
- Вектор спина
- Математическая формулировка спина в квантовой механике
- Оператор спина
- Спин и принцип запрета Паули
- Спин и вращения системы координат
- Спин и лоренцевские преобразования
- Матрицы Паули и операторы спина
- Измерения спина вдоль произвольной оси
- Совместимость измерений спина
- Использование концепции спина в науке и технике
- Обобщение спина
- Сущность спина
- Спин электрона
- Характерный спин
Что такое спин в физике: момент импульса, бозоны, фермионы
Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.
Больше полезной информации для учащихся – у нас в телеграм.
Спин и момент импульса
Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.
Теперь вспомним, что такое момент импульса в классической механике.
Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.
В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:
По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.
Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).
Спин же является собственным моментом импульса, то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы.
Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.
Спиновое квантовое число
Для характеристики спина в квантовой физике введено спиновое квантовое число.
Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:
Бозоны и фермионы
Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.
Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.
Фермионы: электрон, лептон, кварк
Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.
Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе, специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что «в полной мере квантовую физику не понимает никто», обратиться за помощью к опытным специалистам – вполне естественно!
Спин электрона (от англ. «вращение») относится к физическому свойству субатомных частиц, в соответствии с которым каждая элементарная частица имеет собственный момент импульса фиксированной величины.
Это внутреннее свойство, такое как масса или электрический заряд. Когда говорят о спине, вместо буквы l пишется буква s.
В 1920 году химики пришли к выводу, что с известными квантовыми числами (масса, электрический заряд) было невозможно полностью описать электроны в атоме. В химии электроны играют ведущую роль.
Что такое спин в физике
Около 1925 г. три исследователя Ральф Крониг, Гаудсмит и Уленбек начали с идеи, что электрон, который вращается вокруг атомного ядра, похож на Землю, двигающуюся вокруг Солнца.
Как Земля имеет вращательное движение, так и электрон, связанный с атомом, вращается сам по себе.
Полный угловой момент Земли представляет собой векторную сумму ее орбитального углового момента и ее углового момента вращения. Но в случае электрона нельзя рассчитать его угловой момент вращения так, как рассчитывают момент Земли, основываясь на массе, радиусе и угловой скорости.
Электрон является держателем отрицательного электрического заряда. Вращение создает магнитное поле, которое называется спином.
Спин обеспечивает меру собственного момента импульса каждой частицы. Он необходим, чтобы определить тип частицы.
Добавив спин в качестве четвертого числа, можно было дать более полное объяснение характеристик спектров атомов, обладающих одним электроном. Можно представить электрон как крутящийся мяч, а спин как связанный с этим вращением момент. Но в этом случае скорость движения получится выше скорости света.
Существование спина подтверждается многими экспериментальными результатами. До сих пор неизвестно, из чего складывается спин протона. Нельзя провести измерение относительно оси Х и оси У одновременно.
Вскоре концепция была распространена на все субатомные частицы, включая протоны, нейтроны и античастицы. Свойства большинства парамагнитных и ферромагнитных веществ определяет обусловленный спином электрона магнитный момент.
Техника и наука нашли широкое применение определенных свойств, связанных с этим физическим свойством. Правило Хунда говорит, что суммарный спин должен быть максимальным (при распределении электронов в пределах энергетического уровня).
Классификация элементарных частиц по спину
Какое значение может принимать спиновое квантовое число?
Принципы квантовой механики указывают, что значения спина в нормальных условиях ограничены целым или полуцелым числом, кратным постоянной Планка.
Фермионы (электроны, кварки, нейтрино) имеют полуцелые значения (½, 3/2).
Бозоны (фотоны, глюоны, бозоны) имеют спины 0, 1, 2. У фотона спин — 1.
Некоторые экзотические частицы, такие как пион, имеют значение 0.
Магнитный спиновый момент существует для незаряженных частиц, таких как фотон. Ферромагнетизм возникает из-за выравнивания спинов (иногда и от орбитальных магнитных моментов).
В настоящее время микроэлектроника находит применение для определенных свойств или эффектов, связанных с природой вращения, таких как магнитосопротивление или гигантское магнитосопротивление, которое используется в жестких дисках.
Также рассматривается возможность использования этих свойств для будущих компьютеров, в которых спин изолированной системы может служить квантовым битом (кубитом). Сейчас ученые пытаются контролировать спин, используя сверхкороткие импульсы лазера.
Квантовое число характеризует собственный момент движения электрона, одно из состояний микрофизической системы (например, атома, молекулы и т. д.), возможных согласно квантовой теории. Обычно это целое или полуцелое число (n или n + 1/2).
Для четкого описания системы необходимо предоставить полный набор чисел (измеренных одновременно). Открытие трудно переоценить. Без него нельзя было бы построить квантовые вычислители, а многие свойства атомов и материалов так и остались бы загадкой.
Спин электрона — определение, классификация и примеры значений
Спин электрона (от англ. «вращение») относится к физическому свойству субатомных частиц, в соответствии с которым каждая элементарная частица имеет собственный момент импульса фиксированной величины.
Это внутреннее свойство, такое как масса или электрический заряд. Когда говорят о спине, вместо буквы l пишется буква s.
В 1920 году химики пришли к выводу, что с известными квантовыми числами (масса, электрический заряд) было невозможно полностью описать электроны в атоме. В химии электроны играют ведущую роль.
Что такое спин в физике
Около 1925 г. три исследователя Ральф Крониг, Гаудсмит и Уленбек начали с идеи, что электрон, который вращается вокруг атомного ядра, похож на Землю, двигающуюся вокруг Солнца.
Как Земля имеет вращательное движение, так и электрон, связанный с атомом, вращается сам по себе.
Полный угловой момент Земли представляет собой векторную сумму ее орбитального углового момента и ее углового момента вращения. Но в случае электрона нельзя рассчитать его угловой момент вращения так, как рассчитывают момент Земли, основываясь на массе, радиусе и угловой скорости.
Электрон является держателем отрицательного электрического заряда. Вращение создает магнитное поле, которое называется спином.
Спин обеспечивает меру собственного момента импульса каждой частицы. Он необходим, чтобы определить тип частицы.
Добавив спин в качестве четвертого числа, можно было дать более полное объяснение характеристик спектров атомов, обладающих одним электроном. Можно представить электрон как крутящийся мяч, а спин как связанный с этим вращением момент. Но в этом случае скорость движения получится выше скорости света.
Существование спина подтверждается многими экспериментальными результатами. До сих пор неизвестно, из чего складывается спин протона. Нельзя провести измерение относительно оси Х и оси У одновременно.
Вскоре концепция была распространена на все субатомные частицы, включая протоны, нейтроны и античастицы. Свойства большинства парамагнитных и ферромагнитных веществ определяет обусловленный спином электрона магнитный момент.
Техника и наука нашли широкое применение определенных свойств, связанных с этим физическим свойством. Правило Хунда говорит, что суммарный спин должен быть максимальным (при распределении электронов в пределах энергетического уровня).
Классификация элементарных частиц по спину
Какое значение может принимать спиновое квантовое число?
Принципы квантовой механики указывают, что значения спина в нормальных условиях ограничены целым или полуцелым числом, кратным постоянной Планка.
Фермионы (электроны, кварки, нейтрино) имеют полуцелые значения (½, 3/2).
Бозоны (фотоны, глюоны, бозоны) имеют спины 0, 1, 2. У фотона спин — 1.
Некоторые экзотические частицы, такие как пион, имеют значение 0.
1/2 — это спин одиночного электрона. Такая система называется дублет.
Магнитный спиновый момент существует для незаряженных частиц, таких как фотон. Ферромагнетизм возникает из-за выравнивания спинов (иногда и от орбитальных магнитных моментов).
В настоящее время микроэлектроника находит применение для определенных свойств или эффектов, связанных с природой вращения, таких как магнитосопротивление или гигантское магнитосопротивление, которое используется в жестких дисках.
Также рассматривается возможность использования этих свойств для будущих компьютеров, в которых спин изолированной системы может служить квантовым битом (кубитом). Сейчас ученые пытаются контролировать спин, используя сверхкороткие импульсы лазера.
Квантовое число характеризует собственный момент движения электрона, одно из состояний микрофизической системы (например, атома, молекулы и т. д.), возможных согласно квантовой теории. Обычно это целое или полуцелое число (n или n + 1/2).
Для четкого описания системы необходимо предоставить полный набор чисел (измеренных одновременно). Открытие трудно переоценить. Без него нельзя было бы построить квантовые вычислители, а многие свойства атомов и материалов так и остались бы загадкой.
Что такое суммарный спин
Спин в квантовой механике обозначает собственный момент импульса отдельных элементарных частиц и их связанных состояний в виде ядер и атомов. В отличие от орбитального момента импульса, спин не связан с перемещением в пространстве центра инерции частицы, и является её внутренней характеристикой. Поскольку спин является вектором, он имеет направление в пространстве и отражает вращение составных элементов частицы. У ядер и атомов спин определяется по правилам квантовой механики как векторная сумма орбитальных и спиновых моментов импульса составляющих частиц, с учётом квантования проекций моментов импульса. При увеличении размеров системы и количества частиц в ней орбитальные моменты импульса могут быть много больше, чем спиновые моменты импульса. Это приводит к тому, что спин макросистемы в виде отдельного тела почти полностью зависит от орбитального вращения элементов вещества тела вокруг некоторой оси.
В квантовой механике квантовые числа для спина не совпадают с квантовыми числами для орбитального момента частиц, что приводит к неклассической трактовке спина. Кроме этого, у спина и орбитального момента частиц возникает различная связь с соответствующими магнитными дипольными моментами, сопровождающими любое вращение заряженных частиц. В частности, в формуле для спина и его магнитного момента гиромагнитное отношение не равно 1.
Концепция спина у электрона привлекается для объяснения многих явлений, таких как расположение атомов в периодической системе химических элементов, тонкая структура атомных спектров, эффект Зеемана, ферромагнетизм, а также для обоснования принципа Паули. Недавно возникшая область исследований, называемая « спинтроника », занимается манипуляциями спинов зарядов в полупроводниковых устройствах. В ядерном магнитном резонансе используется взаимодействие радиоволн со спинами ядер, позволяющее осуществлять спектроскопию химических элементов и получать изображения внутренних органов в медицинской практике. Для фотонов как частиц света спин связывается с поляризацией света. Математическая теория спина была использована для построения теории изоспина элементарных частиц.
Оглавление
История
В 1924 г. Вольфганг Паули ввёл двухкомпонентную внутреннюю степень свободы для описания эмиссионных спектров валентного электрона в щелочных металлах. Это позволило ему сформулировать принцип Паули, согласно которому в некоторой системе взаимодействующих частиц у каждого электрона должен быть свой собственный неповторяющийся набор квантовых чисел (все электроны в каждый момент времени находятся в разных состояниях). Поскольку физическая интерпретация спина у электрона была неясна с самого начала (и это имеет место до сих пор), в 1925 г. Ральф Крониг (ассистент известного физика Альфреда Ланде) высказал предположение о спине как результате собственного вращения электрона. Однако согласно Паули, в таком случае поверхность электрона должна вращаться быстрее скорости света, что кажется невероятным. Тем не менее осенью 1925 г. Дж. Уленбек и С. Гаудсмит постулировали, что электрон обладает спином в единицах постоянной Дирака
, и спиновым магнитным моментом, равным магнетону Бора. Это предположение и было принято научным сообществом, поскольку удовлетворительно объясняло известные факты.
В 1927 г. Паули модифицировал открытое ранее Шрёдингером и Гейзенбергом уравнение Шрёдингера с целью учёта спиновой переменной, используя спиновые операторы и матрицы Паули. Модифицированное таким образом уравнение носит сейчас название уравнение Паули. При таком подходе у электрона появляется новая спиновая часть волновой функции, которая описывается спинором — «вектором» в некотором абстрактном спиновом пространстве.
Спиновое квантовое число
Спин элементарных частиц
В теории элементарных частиц обычно предполагается, что фотон, электрон и кварки не делятся на более мелкие части и являются самыми «элементарными». Однако спин, который приписывается этим частицам, слишком велик, чтобы его можно было объяснить вращением составляющего вещества при известных оценках размеров частиц. Поэтому для этих частиц спин полагается некоторым внутренним свойством, наподобие массы и заряда, требующим особого, пока ещё не известного обоснования.
В квантовой механике спиновый момент импульса любой системы квантуется. Амплитуда или длина вектора спинового момента в каждом состоянии равна:
Спин составных частиц
К составным частицам можно отнести атомные ядра, состоящие из нуклонов, а также адроны, согласно кварковой концепции состоящие из кварков. Спин составной частицы находится векторным суммированием орбитальных и спиновых моментов импульса всех составляющих её частиц, с учётом правил квантового сложения, и также квантуется, как любой момент импульса. В квантовой механике каждая составная частица имеет некоторый минимально возможный спин, не обязательно равный нулю (в этом состоянии моменты импульса составляющих частиц частично компенсируют друг друга, уменьшая спин составной частицы до минимума). Если же моменты импульса составляющих частиц складываются, то это может приводить к состояниям, в которых составная частица имеет значительный спин. Так, одним из наибольших спинов среди адронов обладает барионный резонанс Δ(2950) со спином 15/2 . Спин ядер из-за их относительно больших размеров может превышать 20
.
В качестве других примеров можно привести Δ- барион и какой-либо нуклон, протон или нейтрон. В кварковой теории у Δ- бариона спины всех трёх кварков складываются, давая спин 3/2. В нуклоне спины двух кварков противоположны и вычитаются, и спин 1/2 нуклона равен спину третьего кварка. Картина однако усложняется тем, что в нуклонах кроме кварков предполагаются глюоны как переносчики взаимодействия, а также виртуальные частицы. Вследствие этого распределение момента импульса между кварками и глюонами в адронах точно не определено.
Спин атомов и молекул
Размеры атомов и молекул много больше размеров атомных ядер, так что спин какого-либо атома определяется его электронной оболочкой. В заполненных атомных оболочках количество электронов чётно и их суммарный момент импульса равен нулю. Поэтому за спин атомов и молекул ответственны неспаренные электроны, находящиеся обычно на внешней оболочке. Считается, что именно спин неспаренных электронов приводит к явлению парамагнетизма.
Ниже указаны спины некоторых элементарных и составных частиц.
общее название частиц
π-мезоны, K-мезоны, хиггсовский бозон, атомы и ядра 4 He, чётно-чётные ядра, парапозитроний
электрон, кварки, протон, нейтрон, атомы и ядра 3 He
гравитон, тензорные мезоны
Связь между спином и статистикой
В квантовой механике волновая функция системы из нескольких одинаковых частиц может быть либо симметричной (неизменной) относительно перестановки местами двух любых частиц, либо антисимметричной, что приводит к умножению волновой функции на −1. В первом случае говорят, что частицы подчиняются статистике Бозе – Эйнштейна, а сами частицы называются бозонами. Во втором случае частицы называются фермионами и подчиняются статистике Ферми – Дирака.
В 1940 г. Паули доказал теорему о связи спина со статистикой, которая утверждает: «Частицы с целым спином ( s = 0, 1, 2, …) являются бозонами, а частицы с полуцелым спином ( s = 1/2, 3/2, …) – фермионами». [2] Это означает, что симметрия волновой функции относительно перестановки одинаковых частиц определяется спиновыми квантовыми числами данных частиц. Свойством частиц – бозонов является то, что в одном и том же квантовом состоянии может находиться одновременно множество частиц. У фермионов каждая частица в соответствии с принципом запрета Паули имеет квантовое состояние, не совпадающее с состояниями других частиц.
Спиновый магнитный момент
где безразмерная величина g называется g-фактором. Для чисто орбитального (например, кругового) вращения элементов заряженного вещества частицы вокруг оси g-фактор должен быть равен 1. У электрона g-фактор почти точно равен 2, что существенно отличает спин от орбитального вращения. Отличие g-фактора электрона от 2 в квантовой электродинамике обосновывается как следствие взаимодействия заряда электрона с окружающим электромагнитным полем, включая самодействие поля электрона. За счёт спинового магнитного момента частицы могут взаимодействовать друг с другом и с внешними магнитными полями.
Как правило принимается, что нейтрино электрически нейтральны, но при наличии некоторой ненулевой массы покоя у них не исключается наличие магнитного момента. [3] [4] [5] Формула для предполагаемого магнитного момента нейтрино имеет вид:
Наличие спина у составных частиц приводит к соответствующему спиновому магнитному моменту. Многие нейтральные адроны, невзирая на равенство нулю у них суммарного заряда, обладают магнитным моментом, причём направление магнитного момента обычно противоположно спину. Это ясно указывает на их сложную внутреннюю электромагнитную структуру. С точки зрения кварков, которым приписываются различные заряды, магнитные моменты адронов приблизительно могут быть получены как комбинации спиновых и орбитальных магнитных моментов составляющих адроны кварков.
Магнитная упорядоченность возникает и под действием внешнего магнитного поля. В парамагнитных материалах магнитные моменты атомов устанавливаются вдоль приложенного магнитного поля, тогда как в диамагнитных веществах атомные магнитные моменты направлены против поля и ослабляют его. Электронный парамагнетизм есть следствие ориентации электронных магнитных моментов, которые начинают прецессировать вдоль направления поля. Диамагнетизм вытекает из действия закона электромагнитной индукции, согласно которому при изменении магнитного потока в системе зарядов возникает электродвижущая сила. Появляющееся по действием этой силы движение зарядов приводит к магнитному полю, направленному противоположно исходному магнитному полю (правило Ленца). Считается, что существенная доля магнитных моментов атомов связана со спином электронов, хотя вклады в магнитные эффекты делают и орбитальные магнитные моменты электронов.
Ориентация спина
Квантовое число проекции спина и мультиплетность
Поскольку спин является вектором момента импульса, он имеет и амплитуду и направление в пространстве. В квантовой механике используется понятие о проекции момента импульса на некоторую выделенную ось (обычно направление этой оси в пространстве задаётся внешним магнитным полем). Пусть выделенное направление фиксируется осью z используемой системы отсчёта. Тогда возможные проекции спина на эту ось имеют значения:
Вектор спина
Вследствие связи между спином и его магнитным моментом внешнее магнитное поле будет приводить к прецессии спина вдоль магнитного поля. Этот эффект аналогичен классическому гироскопическому эффекту – магнитное поле действует на магнитный дипольный момент и создаёт крутящий момент, который прикладывается к спиновому механическому моменту частицы и приводит к прецессии оси вращения и спина частицы.
В квантовой механике спин описывается не просто вектором как классический момент импульса, а с помощью математических объектов – спиноров. Поведение векторов и спиноров при вращении координат различается. Например, каждое вращение частицы со спином 1/2 на 360 градусов приводит частицу не в прежнее состояние, а в состояние с противоположной квантовомеханической фазой. Для частицы с нулевым спином её квантовое состояние при вращении не меняется. Если же у частицы спин равен 2, то при вращении на 180 градусов она получает прежнее квантовое состояние.
Математическая формулировка спина в квантовой механике
Оператор спина
Оператор спина подчиняется тем же соотношениям, что и оператор орбитального момента импульса:
где через m обозначено квантовое число проекции спина на выделенную ось.
Операторы увеличения и уменьшения спина, действующие на данные собственные векторы, дают соотношения:
, где
Спин и принцип запрета Паули
Для систем из N идентичных частиц действует принцип Паули, который устанавливает, что перестановка между любыми двумя из N частиц может привести к изменению волновой функции системы:
Для бозонов фактор ( − 1) 2s равен +1, а для фермионов равен –1. В квантовой механике все частицы разделяются на бозоны и фермионы. В релятивистской квантовополевой теории суперсимметрии допускаются частицы, имеющие и бозонные и фермионные компоненты.
Электроны являются фермионами с величиной s = 1/2; кванты света ( фотоны) являются бозонами с величиной s = 1. Фотоны являются релятивистскими объектами и хорошо вписываются в релятивистскую квантовую электродинамику. Однако полуцелые квантовые числа для спина фермионов отличаются от целых квантовых чисел для орбитального момента и для бозонов, приводя к затруднению при классическом объяснении спина.
Спин и вращения системы координат
Согласно квантовой механике проекция момента импульса на выделенную ось квантуется, образуя ряд дискретный значений. В связи с этим наиболее подходящим квантовомеханическим способом описания спина частицы являются комплексные числа, соответствующие амплитудам вероятности нахождения заданной величины проекции спина на выделенную ось. Например, для частицы со спином 1/2 требуется два числа , задающие амплитуды вероятности нахождения проекций спина, равных
и
, и удовлетворяющие условию:
Поскольку эти числа зависят от выбора осей координат, при вращении осей они должны преобразовываться соответствующим образом. Из линейности преобразований, которые описываются матрицей вращения, результат последовательного вращения, представляемого двумя матрицами A и B, должен быть равен с точностью до фазы результату вращения, представляемого матрицей AB. Кроме этого, вращения сохраняют квантовомеханическое произведение, задающее матрицы преобразования:
С точки зрения математики, эти матрицы определяют унитарное проективное представление группы вращения SO(3). Каждое такое представление соответствует представлению покрывающей группы для SO(3), которым является SU(2). Имеется одно n-мерное неприводимое представление SU(2) для каждого измерения, причём это представление является n-мерным действительным для нечётных n и n-мерным комплексным для чётных n ( следовательно будет 2n действительное представление). В частности, если у частиц спин 1/2, то при вращениях он трансформируется согласно 2-мерному представлению, которое генерируется матрицами Паули:
где α, β, γ являются углами Эйлера.
При наличии у частиц более высоких спинов 1 и 3/2 они трансформируются аналогичным образом с помощью многомерных представлений и соответствующих матриц вращения.
Спин и лоренцевские преобразования
При попытке использовать аналогичный указанному выше подход для поведения спина при преобразованиях Лоренца возникает препятствие. Оно связано с тем, что в отличие от группы преобразований вращения SO(3), группа лоренцевских преобразований SO(3,1) не является компактной и не имеет необходимого унитарного ограниченно-мерного представления.
Матрицы Паули и операторы спина
Квантовомеханические операторы, связанные со спиновыми наблюдаемыми величинами, имеют вид:
Измерения спина вдоль произвольной оси
Оператор спина вдоль произвольной оси может быть получен с помощью спиновых матриц Паули. Допустим u = ( ux,uy,uz ) есть произвольный единичный вектор. Тогда оператор спина в этом направлении определяется выражением . Оператор Su имеет собственные значения
, как и обычные спиновые матрицы. Аналогичным способом находятся операторы спина в произвольном направлении и для спинов более высокого порядка.
Нормализованный спинор для спина 1/2 в ( ux,uy,uz ) направлении (который справедлив для всех случаев спиновых состояний, кроме состояния спин вниз, где получается 0/0), имеет вид:
Этот спинор получается после диагонализации σu –матрицы и определения собственных состояний и собственных значений спина.
Совместимость измерений спина
Поскольку матрицы Паули не коммутируют между собой, измерения спина вдоль осей системы отсчёта не совместны друг с другом. Это означает например, что при известном спине вдоль оси x последующее измерение спина вдоль оси y изменяет значение спина, имевшееся вдоль оси x ранее. Это видно из свойств собственных векторов (собственных состояний) матриц Паули:
Использование концепции спина в науке и технике
Понятие спина широко используется в ядерном магнитном резонансе в химической спектроскопии, в электронном парамагнитном резонансе в химической и физической спектроскопии, в магниторезонансных измерениях плотности протонных спинов с целью сканирования внутренних органов в медицине, в технологиях современных компьютерных жёстких дисков на основе гигантского магниторезистивного эффекта.
Спин и принцип Паули оказываются необходимыми в квантовой механике для объяснения ряда явлений и закономерностей, таких например, как периодическая таблица Дмитрия Менделеева.
Обобщение спина
Введение спина означает применение новой физической идеи: постулирование того, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Обобщение этой идеи в ядерной физике привело к понятию изотопического спина, который действует в особом изоспиновом пространстве. В дальнейшем, при описании сильных взаимодействий были введены внутреннее цветовое пространство и квантовое число цвет, как более сложный аналог спина.
Сущность спина
Особенностью квантовой механики является то, что в ней реальные движения частиц заменяются квантованными волновыми движениями, а результаты экспериментов вычисляются в виде вероятностей тех или иных событий. Такой подход принципиально не может объяснить природу спина, поскольку для этого требуются субстанциональные модели частиц. Некоторые такие модели на основе теории бесконечной вложенности материи, а также концепция динамического спина электрона были предложены Сергеем Федосиным в 2009 г. [8] В теории бесконечной вложенности материи спин ряда одинаковых объектов рассматривается как собственный характерный момент импульса, которым в среднем обладают данные объекты. Если у элементарных частиц характерный спин измеряется в единицах , то на звёздном уровне материи вырожденные объекты типа нейтронных звёзд имеют характерный момент импульса порядка
Дж •с (смотри звёздная постоянная Дирака). Различие спинов как характерных моментов импульса приводит к различию соотношений неопределённости на разных уровнях материи, например: [9]
для уровня элементарных частиц,
для уровня звёзд.
Одним из следствий этого становится то, что приписывание частицам, составляющим объект, того же самого значения спина, которым обладает данный объект, оказывается не всегда правильным (такая ситуация предполагается для трёх кварков внутри нуклона согласно квантовой хромодинамике и особенно в преонных моделях элементарных частиц, где в результате возникает «парадокс масс»).
Спин электрона
Расчёт баланса сил на поверхности электрона с учётом действия сильной гравитации и электрической силы Кулона показывает, что электрон как самостоятельная частица не может иметь какой-то определённый радиус – электрическая сила расталкивает частицы вещества сильнее, чем сила гравитации. Стабилизация электрона в виде облака возможна в атомах, где имеются дополнительные гравитационные и электрические силы притяжения со стороны ядра, силы отталкивания от других электронов и центростремительные силы при вращении вещества.
В субстанциональной модели спин электрона носит не статическую, а динамическую природу. Он появляется за счёт сложного движения электронного облака вокруг ядра в результате взаимодействия с фотоном или другим электроном. Вещество электрона вращается вокруг центра инерции облака, давая орбитальную компоненту момента импульса. Кроме этого возникает общее вращение облака вокруг ядра атома, выражающееся во вращении центра инерции облака относительно ядра и в появлении соответствующей компоненты момента импульса. Эта компонента и является так называемым динамическим спином электрона. Она ответственна за излучение электромагнитного кванта при переходе электрона с верхнего уровня энергии на нижний, а также за спиновый магнитный момент. В отсутствие динамического спина излучение из атома стремится к нулю. Вследствие различия вращательных движений вещества, ответственных за динамический спин и орбитальное вращение, возникает различие значений g-факторов в формулах, связывающих спиновый и орбитальный моменты импульса и соответствующие им магнитные моменты.
Согласно расчётам в основном состоянии атома, а также в s-состояниях магнитный момент электрона в атоме связан не со спином (в этих состояниях динамический спин равен нулю, центр электронного облака не вращается относительно ядра), а с орбитальным вращением вещества электронного облака. Динамический спин и соответствующий ему спиновый магнитный момент для простейшего случая плоского движения вещества могут иметь два направления относительно орбитального момента электрона. Это приводит к энергии взаимодействия магнитного момента электрона и магнитного момента ядра, вращающегося относительно центра инерции электронного облака. Данная энергия приводит к расщеплению уровней энергии на дублеты в водородоподобном атоме, к мультиплетности и к тонкой структуре атомных спектров. В субстанциональной модели электрона даётся своё объяснение лэмбовскому сдвигу уровней энергии, принципу Паули, магнитомеханическим явлениям с электронами, связывающим намагничение образцов с их вращением.
Характерный спин
В ряде случаев характерный спин элементарных частиц можно найти прямым расчётом. В частности для некоторых адронов, исходя из аналогии строения их вещества с нейтронными звёздами, используется соотношение между радиусом и массой
адрона: [10]
где и
– радиус и масса протона.
В следующей таблице приведены массы и радиусы протона, пиона и мюона, необходимые для расчёта их спина. Радиус мюона находился с помощью теории подобия уровней материи, исходя из радиуса белого карлика, соответствующего мюону.
Характеристики протона, пиона и мюона