Что такое супрессор и как он работает

Содержание
  1. Защитный диод (супрессор): принцип работы, как проверить TVS-диод.
  2. Принципы действия
  3. Значимые характеристики защитных диодов
  4. Проверка целостности защитного диода
  5. Основные качества TVS-диодов
  6. Области применения защитных диодов
  7. Как правильно подобрать защитный диод?
  8. Что такое защитный диод и как он применяется
  9. Содержание статьи
  10. Принцип работы и устройство
  11. Виды и обозначение
  12. Основные параметры защитных диодов
  13. Особенности защитных диодов
  14. Области применения диодов
  15. Как проверить защитный диод
  16. Как правильно подобрать супрессор
  17. Полупроводниковая защита: обзор основных серий TVS-диодов от Littelfuse
  18. Устройство и принцип работы TVS-диодов
  19. Основные параметры TVS-диодов
  20. Сравнение характеристик защитных ограничителей напряжения
  21. Обзор TVS-диодов компании Littelfuse
  22. Заключение
  23. Литература
  24. PulseGuard – низкоемкостные чип-супрессоры для ESD-защиты

Защитный диод (супрессор): принцип работы, как проверить TVS-диод.

Защитный диод — гость нашего обзора полупроводников.

Мощность помех, влияющих на уровень напряжения в приборе, может быть различна. Для противостояния высокоэнергетическим импульсам возможно применение газовых разрядников и защитных тиристоров. Чтобы обезопаситься от средне- и маломощных воздействий больше подойдут защитные диоды и варисторы.

Защитный диод, наиболее часто выполняемый из кремния, может носить название:

Зачастую супрессор становится одной из составных частей импульсного питающего блока, поскольку в случае неисправности блока супрессор может защитить его от перенапряжения. Изначально защитный диод был создан в качестве страховки от атмосферных электрических воздействий на приборы.

Существует несколько сфер современного применения ограничительных стабилитронов:

Принципы действия

Защитный диод обладает специфической ВА характеристикой, отличающейся нелинейностью. При условии, что размер амплитуды импульса окажется больше допустимого, то это повлечёт за собой так называемый «лавинный пробой». Иными словами, размер амплитуды будет нормирован, а все излишки будут выведены из сети через защитный диод.

%D0%97%D0%B0%D1%89%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%B4%D0%B8%D0%BE%D0%B4

Рис 1 Защитный диод- принцип работы полупроводника

Принцип работы TVS-диода предполагает, что до момента возникновения опасности диодный предохранитель никоим образом не оказывает влияние на сам прибор и его функциональные свойства. Таким образом, необходимо отметить, что выявляется ещё одно название для защитного диода — лавинный диод.

Существует два типа ограничительных стабилитронов:

Защитный диод, двунаправленный приспособленный для работы в сетях с переменным током.

Применимы только для сетей с постоянным током, поскольку имеют однонаправленный рабочий режим. Способ подключения несимметричного защитного диода не соответствует стандартному. Его анод соединяется с минусовой шиной, а катод — с плюсовой. Положение получается условно перевёрнутым.

Кодировка защитных диодов, относящихся к симметричным, включает в себя литеры «С» или «СА«. У несимметричных диодных предохранителей имеется цветная маркировка в виде полосы на стороне катодного вывода.

Корпус каждого защитного диода также снабжён маркировочным кодом, в сжатом виде отображающим все значимые параметры.

Если входной уровень напряжения у диода увеличится, то стабилитрон в течение очень краткого временного отрезка уменьшит показатель внутреннего сопротивления. Сила тока в этот момент, напротив, возрастёт, а предохранитель перегорит. Поскольку действует защитный диод практически моментально, целостность основной схемы не нарушается. На деле, быстрая реакция на переизбыток напряжения является самым главным достоинством TVS-диода.

Значимые характеристики защитных диодов

Значение напряжения, при котором происходит открытие диода и уведение потенциала к общему проводу. Дополнительное синонимичное обозначение — VBR.

Максимальный обратный ток утечки. Имеет маленькое значение, измеряемое в микроамперах, и функциональность устройства от него практически не зависит. Дополнительное обозначение — IR.

Значение является показателем постоянного обратного напряжения. VRWM.

Наибольшее значение по импульсному напряжению ограничения. VCL, VCmax.

Наибольшее значение пикового импульсного тока. Иначе это показатель наибольшей силы безопасного для защитного диода токового импульса. Для наиболее действенных ограничительных стабилитронов данное значение может составлять сотни ампер. IPP.

Показатель наибольшего значения допустимой импульсной мощности. К сожалению данный параметр крайне зависим от длительности импульса.

%D0%97%D0%B0%D1%89%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%B4%D0%B8%D0%BE%D0%B4 e1476242685925

Рис 2 ВА характеристики защитного диода

Уровень мощности у защитных диодов неодинаков. Тем не менее, если исходных данных по этому параметру у супрессора недостаточно, его спокойно можно скомбинировать ещё с одним или несколькими полупроводниками, что положительно скажется на общем уровне мощности.

TVS-диод может выполнять функцию стабилитрона. Но прежде необходимо проверить его максимально рассеиваемую мощность и динамический ток при Imax. и Imin.

Проверка целостности защитного диода

Проверка на целостность защитного, как и выпрямительного (в том числе силового), диода осуществляется мультиметром (как вариант, можно применить омметр). Использовать прибор с этой целью можно только в режиме прозвонки.

%D0%97%D0%B0%D1%89%D0%B8%D1%82%D0%BD%D1%8B%D0%B9 %D0%B4%D0%B8%D0%BE%D0%B4 1

Рис 3 Проверка защитного диода

Когда мультиметр готов, необходимо щупами соединить его с выводами супрессора (положительный-красный с анодом, отрицательный-чёрный с катодом). Когда это будет сделано, на дисплее тестирующего устройства высветится число обозначающее пороговое напряжение проверяемого диодного предохранителя. При смене полярности подключения должна высветиться бесконечная величина сопротивления. Если всё так и вышло, то элемент исправен.

В случае выявления утечки во время смены полюсов, можно говорить о дисфункциональности элемента и необходимости его замены. Аналогично можно проверить защитный диод автомобильного генератора.

Основные качества TVS-диодов

Но, в качестве итога, необходимо признать, что выполнение одного условия зачастую влечёт за собой нарушение другого.

Помимо этого, TVS-диод в принципе нельзя отнести к числу идеальных защитных ограничителей. Так, например, защитные диоды супрессоры в положении «выключено» можно характеризовать достаточно большими обратными токами. Далее, вызывает неодобрение резкость при смене режимов. Наибольшей же проблемой считается то, что в ограничивающем режиме уровень напряжения находится в прямой зависимости от силы тока.

Необходимо помнить, что все даваемые производителем характеристики диода являются таковыми только в конкретных температурных условиях. При более высоких температурах допустимая пиковая мощность и токи уменьшатся.

Впрочем, несмотря даже на такие недостатки, диодные предохранители всё-таки оказываются лучше приборов, устройств и элементов с аналогичным назначением.

Области применения защитных диодов

Существуют несколько направлений, в которых может применяться супрессор:

Как правильно подобрать защитный диод?

Применение следующих правил поможет избежать проблем с покупкой защитного диода. Чтобы не ошибиться в выборе, необходимо:

Кроме того, нужно учесть:

Источник

Что такое защитный диод и как он применяется

Содержание статьи

Для защиты электронных схем и радиоаппаратуры от перенапряжения и скачков напряжения используются такие эффективные радиоэлементы, как диодный предохранитель (ПОН или TVS). Также защитный компонент известен под названиями супрессор и защитный диод. Такой эффективный прибор впервые был создан в 1968 году, в США, с целью защитить промышленное оборудование от электрических импульсов природного характера (молний).

Основанием для разработки целого класса полупроводниковых ограничителей напряжения послужили большие убытки из-за частого выхода из строя бытовой электроники, вызванного скачками напряжения. Примечательно, что супрессоры (от англ. Suppresor – «подавитель») обладают ярко выраженной нелинейной вольт-амперной характеристикой (ВАХ) и огромным быстродействием.

Принцип работы и устройство

Защитные диоды состоят из двух пластинок, выполненных из германия или кремния, обладающих разной электропроводимостью. Проволочные выводы электродов, как правило, припаиваются к металлическим слоям, нанесенным на внешние поверхности пластинок. Конструкция заключена в пластиковый, металлостеклянный или керамический корпус.

Принцип работы защитного диода основан на применении обратимого пробоя. Пока напряжение не превышает номинальное значение, ограничитель никакого существенного влияния на работу схемы не оказывает, но прибор перейдет в режим лавинного пробоя, как только электроимпульсная амплитуда превысит базисное напряжение. Таким образом, размер амплитуды нормируется, а все излишнее напряжение при этом уходит на землю через сам ограничитель.

Виды и обозначение

Существует два основных вида защитных диодов TVS:

Маркировка защитных диодов позволяет выбрать наиболее подходящий радиоэлемент для сетей постоянного или переменного тока. Несимметричные изделия имеют на корпусе цветное маркировочное кольцо. Цифры и буквы, как правило, сообщают о мощности, напряжении пробоя, а также допустимом отклонении напряжения.

j0oo3qa03mtzrijogapwz2spn3lr8f6u

Основные параметры защитных диодов

Диоды супрессоры имеют целый ряд основных электрических параметров:

Чтобы определить значение максимальной импульсной мощности, потребуется перемножить значение максимального пикового импульсного тока со значением максимального импульсного напряжения ограничения. Важно понимать, что все характеристики супрессора являются таковыми только в конкретных температурных условиях, поскольку при более высоких температурах токи, а также допустимая пиковая мощность будут непременно уменьшаться.

Особенности защитных диодов

Среди особенностей защитных диодов выделяют ряд пунктов:

Несмотря на высокую эффективность, супрессор нельзя назвать стопроцентным защитным ограничителем. Во-первых, в положении «выключено» такие приборы характеризуются значительными обратными токами. Во-вторых, в ограничивающем режиме в прямую зависимость от силы тока попадает уровень напряжения. В-третьих, нельзя забывать о сильной зависимости максимальной импульсной мощности от продолжительности импульса (длительности).

Для усовершенствования схемы существует практика последовательного соединения нескольких полупроводников, что дает увеличение мощности. Защитные диоды TVS часто используют совместно с самовосстанавливающимися предохранителями либо в специальных сборках, в которые уже включены предохранители такого типа.

Области применения диодов

Такие радиоэлементы активно применяются в различных направлениях:

Лавинные диоды широко применяются для защиты бортовой электроники транспортных средств. Например, система зажигания любого автомобиля является одной из самых сильных источников электрических импульсов. Отечественные защитные диоды (Кремний, СЗТП, Фотон, НТЦ СИТ, Саранск, ТОР, Россия и другие) не уступают по качеству, эффективности и доступности зарубежным аналогам.

Как проверить защитный диод

Данный ограничитель может выполнять функцию стабилитрона, но перед использованием очень важно проверить два определенных параметра: динамический ток и рассеиваемую мощность. Целостность проверяется при помощи компактного измерительного прибора – мультиметра. При такой проверке рекомендуется использовать устройство исключительно в режиме прозвонки (со звуковым сигналом).

py8vfri1ysr0o8rsqwiw2i7p057ukjmm

Положительный (красный) щуп соединяем с анодом супрессора, а отрицательный (черный), соответственно, с катодом. Число на дисплее будет обозначать пороговое напряжение проверяемого диода. В зависимости от типа ограничителя напряжение может составлять от 100 до 1000 милливольт. Если смена полярности дает бесконечную величину, то элемент можно считать исправным и готовым к работе. Утечка свидетельствует о необходимости замены защитного компонента.

Если не знаете, как и чем заменить защитный диод, всегда можно обратиться в сервисный центр или пункт ремонта различной электроники. В интернете множество советов и инструкций по замене диодного предохранителя стабилитроном и быстродействующим диодом, но, не имея необходимых знаний и практического опыта, не рекомендуется совершать такие операции самостоятельно. Проверку следует выполнять осторожно, поскольку создание условий срабатывания приведет к выходу защитного компонента из строя.

Как правильно подобрать супрессор

Чтобы не ошибиться в выборе данного прибора, следует придерживаться простых рекомендаций:

Кроме того, перед покупкой рекомендуется дополнительно удостовериться в том, что габариты и параметры радиоэлемента соответствуют требованиям и нюансам монтажа.

Применение современных защитных диодов на схемах отличается высокой эффективностью защиты любого электрооборудования, которое подключено к воздушным линиям.

Источник

Полупроводниковая защита: обзор основных серий TVS-диодов от Littelfuse

Miniatyura41

Компания Littelfuse предлагает широкий выбор различных TVS-диодов как для поверхностного монтажа, так и для монтажа в отверстия, с пиковой мощностью 0,2…30 кВт, с уровнями постоянного обратного напряжения 5…512 В. Все достоинства TVS-диодов Littelfuse по сравнению с другими типами защитных элементов (газоразрядниками, варисторами, тиристорами) и оптимальные области их применения – в предлагаемой статье.

Защита электронных схем от перенапряжений, вызванных различными видами помех, является одной из основных задач при разработке электроники.

Помехи имеют различную природу и отличаются по уровню мощности. Например, импульсы, возникающие при грозовых разрядах, имеют колоссальную энергию и амплитуду напряжения в тысячи вольт. Значительно меньшей энергией обладают выбросы при коммутации индуктивных нагрузок. В слаботочных цепях, в основном, возникают маломощные помехи.

Очевидно, что при таком разбросе мощностей нет возможности использовать некое универсальное защитное устройство. Для выбросов высоких энергий используют газовые разрядники и защитные тиристоры. Для помех средней и малой мощности применяют TVS-диоды и варисторы.

Каждый из перечисленных защитных элементов имеет достоинства и недостатки, но общий принцип функционирования для них одинаков. Его легко продемонстрировать на примере TVS-диода (рисунок 1). TVS включается параллельно защищаемой нагрузке. В нормальных условиях он находится под обратным смещением и практически не влияет на работу схемы. При возникновении высоковольтного импульса происходит обратимый пробой диода. Благодаря этому входное напряжение ограничивается на уровне напряжения пробоя.

43819

Рис. 1. Принцип работы TVS-диода

Существует множество производителей TVS-диодов. Одним из них является компания Littelfuse. Она имеет богатую историю, которая началась в 1927 году с выпуска защитных плавких предохранителей. С тех пор номенклатура производимых компонентов значительно расширилась. Сейчас разработчикам предлагаются плавкие предохранители, самовосстанавливающиеся предохранители PPTC, защитные тиристоры, мощные полупроводниковые модули и многое другое.

Одним из достоинств продукции Littelfuse является высочайшее качество, о котором говорит хотя бы тот факт, что с 1960 года компания Littelfuse плотно сотрудничает с национальным авиакосмическим агентством NASA.

Номенклатура TVS-диодов Littelfuse достаточно обширна, в ней представлены различные супрессоры:

Свойства TVS-диодов значительно отличаются свойств диодов и стабилитронов. Это достигается за счет применения ряда конструктивных особенностей.

Устройство и принцип работы TVS-диодов

TVS-диоды должны обладать следующими качествами:

Несложно заметить, что требования оказываются достаточно противоречивыми. Чтобы увеличить допустимую мощность, нужно улучшить качество теплоотвода. Для этого требуется увеличивать площадь p-n-перехода. Это, в свою очередь, приведет к возрастанию обратных токов. В общем случае, площадь p-n-перехода в TVS значительно больше, чем у обычных диодов, и обратные токи также велики.

Достичь большой площади p-n-перехода можно за счет создания «плоских» переходов. Для двунаправленных TVS-диодов структура оказывается симметричной (рисунок 2).

43885

Рис. 2. Конструкция двунаправленного защитного диода

Принцип работы защитного диода основан на применении обратимого пробоя. Если к TVS приложить напряжение амплитудой больше определенного уровня VBR (напряжение пробоя), начнется пробой с лавинообразным увеличением носителей. Ток, проходящий через диод, практически неограниченно возрастает, а напряжение почти не изменяется. В итоге происходит ограничение входного напряжения. Таким образом, TVS-диод может находится в двух состояниях: выключенном и в режиме ограничения.

Стоит отметить, что TVS не является идеальным защитным ограничителем. Во время пробоя, при увеличении тока, напряжение на диоде возрастает, хотя и незначительно. Это приводит к тому, что уровень ограничения зависит от мощности помехи: чем мощнее помеха, тем выше напряжение ограничения.

Рост напряжения при увеличении тока отражается на наклоне вольт-амперной характеристики TVS (ВАХ).

Основные параметры TVS-диодов

Смысл основных электрических параметров TVS легко пояснить с помощью его ВАХ (рисунок 3). Для однонаправленных диодов она имеет несимметричный вид, для двунаправленных – симметричный.

43955

Рис. 3. ВАХ TVS-диодов

ВАХ TVS отличается от характеристики идеального защитного ограничителя. Во-первых, в выключенном состоянии TVS имеет достаточно большие обратные токи. Во-вторых, переход из области выключенного состояния в режим ограничения происходит не скачком, а плавно. В-третьих, ВАХ в режиме ограничения имеет наклон – напряжение зависит от величины тока.

44020

Рис. 4. Зависимость пиковой мощности от длительности импульса

Для того чтобы учесть все перечисленные особенности, в документации на TVS-диоды всегда приводят характерные значения следующих токов и напряжений:

Постоянное обратное напряжение (VR, Stand-off Voltage), В – максимальное напряжение, которое можно приложить к TVS без его включения.

Ток утечки (IR, Reverse Leakage Current), мА – обратный ток, протекающий через TVS при напряжении VR и при заданной температуре окружающей среды (обычно 25°С). В измерительных цепях важно выбирать TVS с минимальными токами утечки, чтобы избежать искажения полезных сигналов. Например, при защите измерительных цепей резистивных датчиков с токами питания в диапазоне десятков миллиампер ток утечки TVS не должен превышать десятков микроампер.

Напряжение пробоя (VBR, Breakdown Voltage), В, характеризует величину напряжения пробоя. При этом пробой определяется по достижению заданного значения тока пробоя IT при заданной температуре окружающей среды. Значение IT обычно выбирается равным 1 или 10 мА.

В документации, как правило, приводят не конкретное значение напряжения пробоя, а некоторый гарантируемый диапазон.

Напряжение ограничения (VC, Clamping Voltage) характеризует падение напряжения на TVS при протекании заданного пикового тока IPP при заданной температуре окружающей среды.

Максимальный пиковый ток (IPP, Maximum Peak Pulse Current), А – ток который может пропустить супрессор без повреждения.

Для однонаправленных TVS в дополнение к перечисленным параметрам приводятся значения прямого падения напряжения и тока (VF, IF).

Пиковая мощность (PPPM, Peak Pulse Power Dissipation), Вт – значение максимальной мощности при заданной длительности импульса и заданной температуре окружающей среды.

Пиковая мощность имеет сильную зависимость от длительности приложенного импульса (рисунок 4). При выборе TVS для конкретного приложения следует тщательно изучить стандарты с требованиями к электромагнитной совместимости (ЭМС). В них указывается амплитуды, длительности и другие параметры возможных помех.

44085

Рис. 5. Зависимость пиковой мощности и пикового тока от температуры окружающей среды

Выше было неоднократно указано, что значения электрических параметров указываются для конкретных значений температуры. Рост температуры приводит к уменьшению допустимых значений пиковой мощности и токов (рисунок 5).

Важно упомянуть и дополнительные параметры TVS.

Емкость (С, Capacity), пФ, характеризует собственную емкость TVS. Этот параметр является достаточно противоречивым.

С одной стороны, чем больше емкость, тем эффективнее будет ограничение помех. Фактически ограничение помехи начинается благодаря заряду емкости еще до того, как начнется пробой.

С другой стороны, большая емкость будет негативным фактором в случае использования в быстродействующих цепях, так как будет вносить задержку в распространение сигналов.

Тепловое сопротивление «переход-вывод» (RuJL, Typical Thermal Resistance Junction to Lead) или тепловое сопротивление «переход – окружающая среда» (RuJA, Typical Thermal Resistance Junction to Ambient). Эти параметры важны при учете возможностей увеличения пиковой мощности за счет увеличения теплоотвода. Теплоотвод улучшается при использовании радиаторов и при монтаже на плату.

Анализ особенностей TVS показывает наличие и ряда недостатков. С одной стороны, TVS не являются идеальными ограничителями напряжения. Степень ограничения зависит от мощности помехи (рисунок 6). С другой стороны, характеристики TVS зависят от температуры окружающей среды. Однако во многих случаях TVS являются более оптимальным выбором по сравнению с другими защитными компонентами, такими как разрядники, варисторы, тиристоры.

44177

Рис. 6. Особенности ограничения входного импульса напряжения

Сравнение характеристик защитных ограничителей напряжения

Для определения наиболее оптимальных областей применения для TVS-диодов проведем их качественное сравнение с другими типами защитных ограничителей напряжения, производимых компанией LittelFuse. Среди таких ограничителей можно выделить газоразрядные лампы, защитные тиристоры SIDACtor®, варисторы.

При анализе следует рассматривать основные эксплуатационные характеристики: уровни пиковых токов, диапазоны доступных напряжений ограничения, точность обеспечения напряжений ограничения, собственную емкость, эффективность ограничения выбросов, напряжение в режиме ограничения, соотношение габаритов и максимальной токовой нагрузки (таблица 1).

Таблица 1. Сравнительный анализ защитных ограничителей напряжения

100

Параметр Газовые разрядники Защитные тиристоры SIDACtor® Варисторы TVS
Уровень пиковых токов высокий средний высокий средний
Минимальное напряжение включения, В 75 8 6 6
Точность напряжения включения низкая высокая низкая высокая
Эффективность ограничения выбросов напряжения средняя высокая средняя высокая
Типовая емкость, пФ
Соотношение «пиковый ток/габариты» низкое среднее высокое среднее
Время срабатывания большое среднее большое малое

Сравнение показывает, что все ограничители имеют свои особенности и специфику. По этой причине каждый из них находит свою область применения.

Газовые разрядники применяются для защиты оборудования от самых мощных помех. Для них пиковые токи составляют тысячи ампер. При этом число защитных срабатываний оказывается достаточно большим. Среди недостатков можно отметить большое значение напряжения в режиме ограничения и невысокое быстродействие. Это не позволяет использовать разрядники для низковольтных цепей. Еще одним недостатком можно считать большие габариты.

Тиристоры SIDACtor® используются для защиты от менее мощных помех. В сравнении с газоразрядными лампами они имеют лучшую эффективность ограничения. Это значит, что напряжение ограничения для них не так сильно зависит от тока, как для разрядников. Еще одним достоинством тиристоров является их надежность и долгий срок службы.

Главными достоинствами варисторов являются высокое соотношение пиковых токов и габаритов. Благодаря последнему обстоятельству, варисторы оптимальны для создания максимально компактных решений при защите от мощных помех. Их применяют как в источниках питания переменного тока, так и при защите низковольтных линий питания постоянного напряжения (например, в стандартных компьютерных интерфейсах).

TVS-диоды имеют наименьшее значения напряжений ограничения и самое быстрое время срабатывания. Его точность оказывается лучшей среди всех перечисленных приборов защиты. Эти факторы позволяют применять TVS не только для защиты линий питания, но и для защиты сигнальных, и даже логических линий.

44242

Если анализировать типовые области применения TVS-диодов, то среди них можно выделить следующие основные группы (рисунок 7):

Компания Littelfuse выпускает широкий спектр защитных TVS-диодов для различных приложений.

Обзор TVS-диодов компании Littelfuse

Серии TVS производства компании Littelfuse отличаются высокими рабочими характеристиками и выпускаются для различных видов монтажа (рисунок 8).

Компания Littelfuse также выпускает специализированные серии супрессоров для автомобильных приложений. Они способны работать в максимально жестких условиях.

44374

Рис. 8. Варианты корпусных исполнений TVS-диодов производства компании LittelFuse

Наименования супрессоров Littelfuse унифицированы и состоят из пяти составляющих: названия серии, рейтинга напряжения, полярности (однонаправленные/двунаправленные), точности напряжения, типа упаковки (таблица 2).

Таблица 2. Наименования TVS-диодов производства компании LittelFuse

Структура наименования
1 2 3 4 5
P6KE 6.8 C A B
Серия Значение напряжения Полярность Точность напряжения Упаковка
SMAJ – 400 Вт Значение постоянного обратного напряжения С = двуполярный A = 5% B – Bulk Pack
SMBJ – 600 Вт
SMCJ – 1500 Вт
SA – 500 Вт
LCE – 1500 Вт
5KP – 5000 Вт
P4SMA – 400 Вт Значение напряжения пробоя
P6SMBJ – 600 Вт
1KSMBJ – 1K Вт
1.5SMC – 1,5 кВт
P4KE – 400 Вт
1.5KE – 1,5 кВт

Рейтинг напряжения для ряда серии указывает на минимальное значение постоянного обратного напряжения. Для некоторых серий в названии указывается номинальное напряжение напряжения пробоя.

Для портативных устройств, критичных к габаритам электронных компонентов, идеально подойдут однонаправленные TVS серии SMF. Они выпускаются в корпусах SOD-123, длина которых не превышает 3,9 мм, а ширина – менее 2 мм. При этом их пиковая мощность составляет 200 Вт.

Представители серий SMAJ и P4SMA имеют пиковую мощность 400 Вт. Доступны как однонаправленное, таки в двунаправленное исполнения. Для обеих серий используется стандартный корпус DO-214AC.

Такой же корпус имеют диоды серии SMA6L. Однако их мощность составляет уже 600 Вт. Номенклатура серии состоит всего из двух представителей с уровнями постоянного обратного напряжения 5 и 12 В.

Серия SMA6L имеет такую же пиковую мощность, как и у SMA6J, но выбор уровней постоянного обратного напряжения для нее гораздо шире – 5…80 В.

Серии SMA6L и SMA6J состоят только из однонаправленных диодов.

Серия SACB имеет интересную особенность – в одном корпусе интегрирован TVS и обычный выпрямительный диод. Это дает возможность использовать SACB в цепях переменного напряжения. Впрочем, стоит помнить, что для ограничения импульсов положительной и отрицательной полярности необходимо использовать два разнополярно включенных параллельных SACB.

Серии SMBJ, P6SMB имеют такую же пиковую мощность как и серии SMA6L и SMA6J, но диапазон доступных уровней постоянного обратного напряжения для них существенно шире, он доходит до 440 и 490 В соответственно. Кроме того, SMBJ и P6SMB выполняются как в одно- так в двунаправленной конфигурации.

Наибольшей пиковой мощностью среди TVS в корпусе DO-214AA обладают представители серии 1KSMB (до 1000 Вт).

Серии SMCJ и 1.5SMC выпускаются в корпусе DO-214AB и имеют пиковую мощность 1500 Вт. Для обеих серий доступны одно- и двунаправленные модификации.

Серии SMDJ и 3.0SMDJ имеют мощность 3000 Вт и небольшой диапазон доступных напряжений переключения.

Серия 4.0SMDJ24A состоит из одного представителя с постоянным обратным напряжением 24 В.

Наибольшей пиковой мощностью в 5000 Вт обладают представители серии 5.0SMDJ.

Таблица 3. TVS-диоды для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение
пробоя мин., В
Напряжение ограничения при максимальном пиковом токе, В Пиковая
мощность, Вт
Диапазон рабочих температур, °C
SMF SOD-123 5,0…54 6,4…60,0 9,2…87,1 200 -65…150
SMAJ DO-214AC 5,0…440 6,4…492,0 9,2…713,0 400
P4SMA DO-214AC 5,8…495 6,45…522,5 10,5…760 400
SMA6J DO-214AC 5,0…12 6,4…13,3 9,2…19,2 600
SMA6L DO-221AC 5,0…85 6,4…94,4 9,2…137,0 600
SACB DO-214AA 5,0…50 7,6…55,5 10…88,0 500
SMBJ DO-214AA 5,0…440 6,4…492 9,2…713,0 600
P6SMB DO-214AA 5,8…495 6,45…522,5 10,5…760,0 600
1KSMB DO-214AA 5,8…136 6,45…171,0 10,5…246,0 1000
SMCJ DO-214AB 5,0…440 6,4…492 9,2…713,0 1500
1.5SMC DO-214AB 5,8…495 6,45…522,5 10,5…760,0 1500
SMDJ DO-214AB 5,0…170 6,4…242,0 9,2…356,0 3000
3.0SMC DO-214AB 20…30 22,2…36,7 42,0…70,0 3000
4.0SMDJ24A DO-214AB 24 26,7 38,9 4000
5.0SMDJ DO-214AB 12…170 13,3…189,0 19,9…275,0 5000

TVS-диоды малой и средней мощности являются выводными аналогами рассмотренных выше семейств для поверхностного монтажа (таблица 4). Отдельно стоит отметить серию LCE.

Таблица 4. TVS-диоды малой и средней мощности для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение
пробоя мин., В
Напряжение ограничения при максимальном пиковом токе, В Пиковая мощность, Вт Диапазон рабочих температур, °C
P4KE DO-41 5,8…495 6,45…522,5 10,5…760 400 -65…150
SA DO-15 5,0…180 6,4…200,0 9,2…289,0 500
SAC DO-15 5,0…50 7,6…55,5 10…88,0 500
P6KE DO-15 5,8…512 6,45…570,0 10,5…828,0 600
1.5KE DO-201 5,8…512 6,45…570,0 10,5…828,0 1500
LCE DO-201 6,5…90 7,22…100,0 11,2…146,0 1500
3KP P600 5,0…220 6,4…244,0 9,2…371,0 3000
5KP P600 5,0…250 6,4…277,0 9,2…425,0 5000

TVS серии LCE, как и серий SAC и SACB, представляют собой интегрированные в одном корпусе TVS и выпрямительный диод. Но, по сравнению с SAC, диоды LCE имеют большую пиковую мощность (1500 Вт) и более широкий диапазон доступных напряжений пробоя.

TVS-диоды большой мощности выпускаются только в выводных исполнениях (таблица 5).

Таблица 5. TVS-диоды большой мощности для поверхностного монтажа

Наименование Корпус Постоянное обратное напряжение, В Напряжение пробоя мин., В Напряжение ограничения при максимальном пиковом токе, В Пиковая
мощность, Вт
Диапазон рабочих температур, °C
15KPA P600 17…280 18,99…312,8 29,3…454,5 15000 -65…150
20KPA P600 20…300 26,81…335,1 36,8…483,0 20000
30KPA P600 28…288 31,28…334,0 50,0…484,0 30000
AK1 Radial Lead 76 85 140 -55…150
AK3 Radial Lead 15…430 16,0…440,0 28,0…625,0
AK6 Radial Lead 30…430 32,0…440,0 90,0…625,0
AK10 Radial Lead 30…430 32,0…560,0 58,0…750,0
AK15 Radial Lead 58…76 64,0…85,0 110,0…150,0 -55…125
SLD P600 10…36 11,8…40,0 19,0…60,1 2200 -55…150

Серии 15KPA, 20KPA, 30KPA имеют пиковую мощность, соответственно, 15 кВт, 20 кВт и 30 кВт. Однако минимальные значения постоянного обратного напряжения для них превышают 20 В. Исключением является серия 15KPA, для которой значение обратного напряжения – от 17 В.

Серии AKx имеют радиальное расположение выводов и большую поверхность p-n-переходов. Они оптимизированы для протекания огромных токов до 1 кА (AK1) и до 15 кА (AK15). В первой половине 2015 года ожидается выпуск изделия на ток до 30 кА. При этом ВАХ этих TVS, с учетом отклика на мощные импульсы, имеет ярко выраженную петлю. Данные диоды могут включаться параллельно для увеличения суммарной мощности.

Серия SLD оптимизирована для автомобильных приложений и имеет пиковую мощность 2,2 кВт.

Огромный выбор различных TVS позволяет разработчику найти оптимальный компонент для своего приложения. Инженеры Littelfuse предлагают алгоритм для определения подходящего диода с учетом особенностей приложения.

Алгоритм выбора TVS-диодов Littelfuse:

Значение обратного напряжения диода должно быть больше номинального напряжения схемы. В противном случае возможно включение диода даже при отсутствии помех.

Значение токов и мощностей может быть определено с учетом импеданса защищаемой схемы. При расчете, как правило, отталкиваются от параметров помех, указанных в стандартах помехозащищенности.

Напряжение ограничения не должно превышать максимально допустимое значение напряжения защищаемой линии.

Заключение

TVS-диоды имеют существенные конструктивные отличия от обычных диодов. Целью изменений является увеличение значений пиковых токов и мощностей.

Как и другие защитные ограничители напряжения, TVS-диоды имеют особенности применения. Для большого количества приложений именно TVS являются оптимальным выбором. Среди областей их применения можно выделить силовую электронику, цифровые интерфейсы, управляющие и телекоммуникационные схемы.

В номенклатуре Littelfuse представлены TVS-диоды с различными характеристиками:

Многообразие супрессоров Littelfuse позволяет разработчикам выбирать оптимальные TVS для каждого конкретного приложения.

Литература

LTF TVS NE 14 14 opt

PulseGuard – низкоемкостные чип-супрессоры для ESD-защиты

Электростатический разряд (ESD) – это разновидность электрических переходных процессов, представляющих серьезную угрозу для чувствительных электронных схем. Наиболее распространенной причиной появления ESD является трение между разнородными материалами.

Потенциал ESD-помехи может достигать уровня до 15000 В, что может вызывать катастрофические повреждения электронных компонентов в цепи.

PulseGuard® – семейство чип-супрессоров электростатического разряда, разработанное компанией Littelfuse для сигнальных низковольтных цепей. Данные разрядники, изготовленные из полимерных композитов, обладают крайне низкой емкостью (

Источник

Мир познаний
Добавить комментарий

Adblock
detector