Что такое сурьма а гальванике

KCN свободный 70-80

K(SbO)C 4 H 4 O 6 •0,5H 2 O 2

Sb 2 O 3 (порошок) 20

Режим электролиза: температура электролита 20 ± 5°С, i к = 0,5 ÷ 1,0 А/дм 2 (0,5 А/дм 2 для колокольных и барабанных установок), аноды — из серебра, S а :S к = 0,75:1,0, S к = 1 дм 2 /л. Такие условия электролиза позволяют получать блестящие покрытия, содержащие до 0,7% Sb, обладающие микротвердостью

100—125 кгс/мм 2 и в 2 раза большей износостойкостью; переходное сопротивление в 1,2 раза выше, чем серебряных покрытий.

Кривые катодной и анодной поляризации в саморегулирующемся электролите представлены на рис. 85.

1 135

1— без серебра и Sb 2 O 3 ; 2 — без серебра; 3 — без серебра и сегнетовой соли; 4 — без Sb 2 O 3 ; 5 — основной состав электролита; 6 — то же, с добавкой 40 г/л сегнетовой соли

Добавка Sb 2 O 3 практически не влияет на равновесный потенциал восстановления серебра и незначительно повышает первый предельный ток. При совместном введении в электролит Sb 2 O 3 и сегнетовой соли значительно изменяется катодная поляризация серебра и повышаются оба предельных тока.

Сурьма из тартратно-цианистого электролита восстанавливается в сплав беспрепятственно, так как ее в электролите находится 2 г/л, и, кроме того, повышенное содержание в электролите свободного цианида и наличие КОН способствуют сдвигу кривой поляризации серебра в сторону отрицательных значений. Поэтому сурьма в таких покрытиях содержится в неупорядоченном состоянии.

Источник

Содержание
  1. Гальванопокрытия сурьмой
  2. Новости
  3. Элементы: ядовитый полуметалл – сурьма
  4. СРАВНЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ПОКРЫТИЙ СЕРЕБРОМ И СПЛАВОМ СЕРЕБРО-СУРЬМА
  5. Малинский Э. Н., Буткова Г. Л., Зытнер Л. А., Стрюк В. В.
  6. Оценка точности экспериментальных данных по измерению микротвердости покрытий
  7. Глубина истирания покрытий при разных плотностях тока и концентрациях сурьмы в электролите
  8. ЛИТЕРАТУРА
  9. Сурьма: история, польза, применение
  10. Сурьма как вещество: физические свойства
  11. Кристаллическая сурьма
  12. Черная сурьма
  13. Желтая сурьма
  14. Взрывчатая сурьма
  15. Сурьма и человек: историческая справка
  16. Сурьма и организм: несколько слов о биологии
  17. Сурьма как элемент: химические свойства
  18. Сурьма как полезное ископаемое: добыча и производство
  19. Сурьма как ресурс: применение
  20. Металлургия
  21. Полупроводниковая промышленность
  22. Медицина
  23. Другие области применения

Гальванопокрытия сурьмой

Гальванопокрытия сурьмой используют для частичной замены оловянных при изготовлении печатных схем для обеспечения надежной пайки, для замены кадмия при защите стальных изделий от коррозии в морских условиях и др. Цвет покрытий серебристый блестящий.

Для осаждения сурьмяных покрытий применяют электролит (в г/л):

Сурьмяновиннокислый калий 50 — 70

Сегнетова соль 3 — 5

Соляная кислота (1,19), мл/л 3 — 5

В тартратных растворах сурьмяные аноды легко пассивируются. Добавка сегнетовой соли способствует растворению пассивной пленки. Скорость растворения сурьмы (рис. 60, участок 1) не зависит от концентрации тартрат-ионов. Потенциал анодного растворения не изменяется и при замене тартратов цитратами.

1 106

Рис. 60. Кривые анодной поляризации сурьмы в тартратном электролите (рН = 1,8)

Для получения качественных сурьмяных покрытий применяют электролиты (в г/л):

Sb (в виде металла) 50 — 60 Солянокислый

Sb (в виде металла) 60-65

Водно-глицериновый NaOH 105-110

В первом электролите имеет место равновесие:

1 107

Для скоростного осаждения сурьмы на полупроводники применяют электролит, который приготовляют следующим образом: 370 г металлической сурьмы растирают в ступке, просеивают через сито, помещают в фарфоровую чашку и заливают серной кислотой (1,84) в количестве 8 — 17 г.

Источник

Новости

Время работы: с 10:00 до 21:00,
Выходной день: вторник
«Ретро-кафе»: в дни работы Планетария с 10:00 до 20:00.

Музей «Лунариум» временно закрыт

+7 (495) 221-76-90
АО «Планетарий» © 2017 г. Москва, ул.Садовая-Кудринская, д. 5, стр. 1

Элементы: ядовитый полуметалл – сурьма

Первые производства сурьмы появились на древнем Востоке 5 тысяч лет назад. Сурьмяная бронза (сплав меди и олова с добавлением сурьмы) использовалась в период Вавилонского царства во втором тысячелетии до н.э. Исторически сложилось так, что в русской химической терминологии у этого элемента три названия. Химический элемент называется «сурьма», в формулах произносится «стибиум», а соединения сурьмы с металлами называются антимонидами». В 1789 г. Лавуазье включил сурьму в список простых веществ, дав ей название antimoine от лат. «antimonium». Оно и сейчас остается французским названием элемента № 51. Другое латинское название элемента, «stibium», встречается в сочинениях Плиния Старшего в первом веке н. э. и стало международным. Русское слово «сурьма» родом из турецкого языка. Так и сейчас на Востоке называется порошок для чернения бровей. По другим данным, «сурьма» — от персидского «сурме» — металл. Итак, сурьма (символ — Sb) имеет атомный номер 51 в Таблице Менделеева с атомной массой 121, 760 а.е.м. и относится к группе полуметаллов.

43b8a91d490b7ed33855819a6088fa09
Сурьма в Таблице Менделеева.

d3f25c6d4326a1287f4820f02922bc7c
Кристаллическая сурьма.

04d29a9940d52a8e27912cc5e944db44
Антимонит Sb2S3, кристаллы до 5 см. Месторождение Кадамджай, Киргизия.

Мировая добыча сурьмы по итогам 2015 года составила около 145 тысяч тонн. Основные объемы добычи приходятся на Китай (47%), Россию (17%), Боливию (15%) и Таджикистан (12%).

cd606babb59de7f3aa47604986bb5583
Мировая добыча сурьмы, 2015 г.

Сурьма применяется при производстве диодов и инфракрасных детекторов. Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность.

Источник

СРАВНЕНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ ПОКРЫТИЙ СЕРЕБРОМ И СПЛАВОМ СЕРЕБРО-СУРЬМА

Малинский Э. Н., Буткова Г. Л., Зытнер Л. А., Стрюк В. В.

В отличие от чистого металла гальванические сплавы обладают большей износостойкостью, твердостью и повышенной устойчивостью к атмосферным воздействиям [1, 2]. С этой точки зрения интерес представляют сплавы серебра с родием, вольфрамом, молибденом и сурьмой. Предварительные опыты показали, что положительные результаты получаются при электроосаждении покрытий Аg—Sb из электролита состава, г/л:

Покрытия наносили на механически отполированные латунные образцы. Толщина покрытия изменялась в пределах 4-30 мкм и контролировалась взвешиванием образца до и после покрытия. Содержание сурьмы в электролите определяли объемным (броматометрическим) методом [3], а в покрытии — колориметрическим методом на спектрофотометре СФ-18 и фотоколориметре ФЭК-М [4].

Для сравнения были получены серебряные покрытия из электролита указанного состава, не содержащего сурьмяновиннокислый калий и сегнетову соль [5].

Авторы статьи изучили физико-механические свойства покрытий (микротвердость, износостойкость, блеск и коррозионную стойкость) в зависимости от различных факторов: концентрации сурьмы в электролите и покрытии, катодной плотности тока и температуры, при которой серебряные покрытия испытывались на «старение».

Микротвердость покрытий определяли по методу Виккерса на приборе ПМТ-3 при нагрузке 20 г. Наименьшую толщину покрытий, при которой исключается влияние металла подложки на величину микротвердости образца, в первом приближении вычисляют по формуле:

galv11

Для данных опытов эта величина составляла 18- 20 мкм.

Микротвердость каждого образца покрытия определяли по семи замерам диагонали отпечатка алмазной призмы и рассчитывали по формуле:

galv12

Для оценки погрешности измерений проводили первичную математическую обработку экспериментальных данных. Пример оценки погрешности измерений дан для серебряных покрытий с микротвердостью 90, 150 и 202 кгс/мм 2 (табл. 1).

Оценка точности экспериментальных данных по измерению микротвердости покрытий

galv13

Коррозионную стойкость покрытий толщиной 4 и 6 мкм, полученных при плотности тока соответственно 2,0 и 3,0 А/дм 2 из электролита оптимального состава, определяли в камере влажности в течение десяти суток.

Блеск покрытия измеряли по абсолютному коэффициенту отражения, измеренному по методу Тейлора на спектрофотометре СФ-18.

galv14

По данным рис. 1 видно, что повышение плотности тока и концентрация сурьмы в электролите приводят к увеличению содержания сурьмы в покрытии. Изменение содержания сурьмы в покрытии оказывает влияние на физико-механические свойства покрытий. Сравнение величины микротвердости покрытия в зависимости от концентрации сурьмы в электролите позволяет сделать вывод, что микротвердость определяется содержанием в нем сурьмы (рис. 2). Ход кривых, представленных на рис. 3, также подтверждает этот вывод. Так, с возрастанием плотности тока увеличивается содержание сурьмы в покрытии и растет его микротвердость.

galv15

Известно, что серебряные покрытия подвержены «старению». Это выражается в снижении микротвердости покрытия, что нежелательно. Одним из ускоренных методов испытания на «старение» является термообработка. Условиям эксплуатации ювелирных изделий наиболее полно соответствуют выдержка образцов в кипящей воде или термостате.

galv16

На рис. 4 показано влияние температуры термообработки на микротвердость покрытия при разных концентрациях сурьмы в электролите. Из приведенной зависимости видно, что, чем выше концентрация сурьмы в электролите и, следовательно, в сплаве, тем больше микротвердость покрытия при всех исследуемых температурах. Однако с повышением температуры термообработки микротвердость покрытия снижается.

Глубина истирания покрытий при разных плотностях тока и концентрациях сурьмы в электролите

Концентрация сурьмы в электролите, г/л Плотность тока, А /дм 2 Разность в весе образца после истирания, г Глубина истирания при 5000 ходов, мкм
2,0 0.073 23,2
2,0 2,0 0,011 3,3
2,0 4,0 0,008 2,4
4,0 2,0 0,007 2,2
4,0 4,0 0,007 2,2
6,0 2,0 0,005 1,8
6,0 4,0 0,005 1,6
8,0 2,0 0,005 1,8
8,0 4,0 0,007 2,2

Результаты определения износостойкости покрытия приведены в табл. 2. Истирание сплава серебро — сурьма, по данным табл. 2, в 8—10 раз меньше, чем истирание серебряного покрытия, т. е. износостойкость покрытий сплавом выше, чем покрытий серебром.

Для качественной характеристики стойкости покрытий к старению и коррозионной стойкости авторы определили коэффициенты отражения покрытий серебром и его сплавами.

Таким образом, физико-механические свойства покрытий сплавом серебро — сурьма значительно выше, чем серебряных. Покрытия сплавом серебро — сурьма являются перспективными для ювелирной промышленности.

ЛИТЕРАТУРА

1. Федотьев Н. П. и др. Электролитические сплавы. М., «Машгиз», 1962. 6.

2. Буткова Г. Л. и др. Электролитические сплавы серебра. — Сб. трудов ВНИИювелирпром. Вып. 2. Л., 1973, 18—30.

3. Вячеславов П. М. Новые электрохимические покрытия. «Лениздат», 1972, 224-226.

4. Определение примесей железа, цинка, свинца, сурьмы, олова, мышьяка, фосфора, титана, никеля, кобальта, индия в литейных и гальванических сплавах золота и серебра. Методы анализа. РТМ 25199 — 71.

5. Буткова Г. Л., 3ытнер Л. А., Стрюк В. В. Высокопроизводительный электролит серебрения. — «Высокопроизводительные электролиты для нанесения металлических покрытий». Л., ЛДНТП, 1975, 81—83.

Источник

Сурьма: история, польза, применение

21

Сурьма металлическая — 51-й химический элемент в периодической таблице Менделеева, обозначается символом Sb. Это полуметалл с зернистым строением и светлым голубовато-серебристым оттенком. В свободном состоянии представляет собой кристаллы с металлическим блеском.

Сурьма как вещество: физические свойства

Внешне вещество похоже на металл, однако характеризуется меньшей электро- и теплопроводностью. Оно отличается хрупкостью (легко растирается в порошок) и способностью расширяться при застывании.

Элемент существует в четырех модификациях:

Кристаллическая сурьма

В основной модификации полуметалл образует игольчатые кристаллы в форме звезд. Чем меньше примесей, тем толще кристаллы. Вещество начинает плавиться при температуре +630,5 ⁰C, закипает — при +1634 ⁰C. Обладает диамагнитностью, т.е. намагничивается против направления внутреннего поля.

Основные свойства вещества:

В основной модификации металл устойчив при стандартных условиях. Он имеет слоистую структуру.

Черная сурьма

Желтая сурьма

Чтобы получилась желтая сурьма, требуется воздействие кислорода на сниженный стибин SbH3. Эта модификация содержит небольшой процент химически связанного водорода. Является неустойчивой: переходит в черную сурьму при освещении или нагревании.

Взрывчатая сурьма

Сурьма и человек: историческая справка

Этот металл применялся с доисторических времен. При раскопках на территории древнего Вавилона археологи обнаружили сосуды из металлической сурьмы. Изделия датируются 3 тысячелетием до н.э.

Предметы из этого металла также были найдены в Грузии: находки относятся к 1 тысячелетию до н.э. В древности металл использовался в сплаве со свинцом, медью или оловом.

С XIX в. до н.э. в Древнем Египте и странах Азии (Индия, Междуречье и др.) повсеместно применялся «сурьмяный блеск» — черный порошок из соединений полуметалла, который использовался для грима (в основном для чернения бровей).

До конца неизвестно происхождение самого названия. В тюркских языках существует слово surme, которое обозначает «грим, мазь». В персидском «сурме» значит «металл».

58

Сурьма и организм: несколько слов о биологии

Сурьма относится к макроэлементам и участвует в обменных процессах многих живых организмов. Среднее количество элемента в растениях — 0, 06 мг, в наземных животных — 0,0006 мг, в морских животных — 0,02 мг. В организме человека содержится не более 0,00001% сурьмы по массе. Она поступает с воздухом, пищей и водой, содержится в щитовидной железе, эритроцитах и плазме крови, печени, почках, костной ткани, селезенке. В среднем за сутки поступает около 50 мкг и выводится мочой и фекалиями.

До конца не изучены физиологическая и биохимическая функции макроэлемента, поэтому нет достоверных данных о возможных последствиях ее дефицита в организме. При этом установлено, что избыток вещества препятствует белковому, жировому и углеводному обменам. Если сурьма накапливается в щитовидной железе, она угнетает ее работу и вызывает эндемический зоб. При одноразовом попадании в пищеварительный тракт вызывает рефлекторную рвоту и полностью выводится. При регулярных поступлениях избыточного количество сурьмы в пищевод возможны заболевания желудочно-кишечного тракта, в том числе язвы.

Токсичные пары металла могут вызвать поражения кожи и носовые кровотечения. В зоне риска — люди, которые работают с этим металлом постоянно: печатники, эмалировщики и др.

В малых дозах макроэлемент применяется в медицине — в основном, в составе отхаркивающих и рвотных средств.

40

Сурьма как элемент: химические свойства

Металлическая сурьма малоактивна и устойчива на открытом воздухе при нормальных температурах. Начинает окислятся при +630 ⁰С, в результате чего образуется соединение Sb2O3 — оксид сурьмы. Полуметалл не вступает в реакции с водородом, азотом, кремнием и бором, остается устойчивым к воде, а в расплавленном виде незначительно растворяет углерод.

В результате возможных химических реакций образуются следующие вещества:

Полуметалл растворяется в «царской водке» — смеси винной и азотной кислот.

50

Сурьма как полезное ископаемое: добыча и производство

Месторождения металлической сурьмы находятся в ЮАР, Китае, Алжире, России, Болгарии, Азербайджане, Киргизии, Сербии, Финляндии, Казахстане, Таджикистане. Содержание элемента в земной коре невелико — 500 мг/т. Большая часть вещества сконцентрирована в осадочных породах — бокситах, фосфоритах, глинистых сланцах. Меньше всего ископаемого содержится в песчаниках и известняках.

Более 70% этого металла производится в Китае, а остальные 30% делят Россия, Мьянма, Боливия, Таджикистан, ЮАР, Канада, Австралия и некоторые другие страны.

На территории Китая также находятся самые крупные резервы — более 50% мировых запасов. Около 20% расположено в России, 16% — в Боливии, 3% — в Таджикистане, 1% — в ЮАР, менее 10% рассредоточено по разным странам.

60

Сурьма как ресурс: применение

Металлургия

Поскольку сурьма — хрупкий металл, в металлургической промышленности она практически не применяется отдельно. Зато в сплавах она повышает прочность других металлов и препятствует окислению.

Сплав сурьмы, олова и свинца называется «гарт» (в переводе с украинского — «зеркала»). Он на протяжении многих веков используется в типографии для изготовления шрифтов. В основу положено свойство сурьмы расширяться при затвердевании: благодаря этому сплав более плотно заполняет литейную матрицу. Помимо этого, сурьма повышает износостойкость шрифта. Гарт также используется для отливки пуль, изготовления кабелей, труб для протока агрессивных жидкостей и др.

Сплав свинца и сурьмы отличается твердостью и устойчивостью к коррозии. Он применяется в химическом машиностроении.

Баббиты (подшипниковые сплавы) широко используются в железнодорожном, автомобильном транспорте и станкостроении. Они содержат сурьму, олово, медь и свинец. Имеют высокую твердость, стойкость к истиранию и коррозии.

Всего существует порядка 200 сплавов различных металлов с сурьмой. В том числе она добавляется к металлам для хрупкой отливки.

80

Полупроводниковая промышленность

Полуметалл входит в свинцовые сплавы, используется при производстве диодов, ИК детекторов, датчиков Холла и других элементов в полупроводниковой промышленности.

Медицина

Стибнит, природный сульфит сурьмы, в древности применялся в качестве лекарства от паразитов. В некоторых странах его до сих пор добавляют в препараты. Соединения металла применяются для лечения лейшманиозов и глазных заболеваний.

Другие области применения

Оксид сурьмы используют в текстильной промышленности как закрепитель. Он также входит в состав многих эмалей и красок. Пятиокись металла применяется при изготовлении стекла, люминесцентных ламп, резины. Трехсернистая сурьма входит в состав спичек. Металла находит применение в электронике (для некоторых припоев) и в термоэлектрический сплавах.

Источник

Мир познаний
Добавить комментарий

Adblock
detector