Что такое сужение крыла

Сужение крыла

Смотреть что такое «Сужение крыла» в других словарях:

Сужение крыла — 39. Сужение крыла η Отношение длины центральной хорды крыла к длине концевой хорды крыла Источник: ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

сужение крыла — сужение крыла — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η … Энциклопедия «Авиация»

сужение крыла — сужение крыла — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η … Энциклопедия «Авиация»

ГОСТ 22833-77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения — Терминология ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения оригинал документа: 3. Базовая ось самолета ORXR Прямая, расположенная в базовой плоскости самолета, проходящая через базовую точку… … Словарь-справочник терминов нормативно-технической документации

Горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее часто Г. о. устанавливают в хвостовой части летательного аппарата, однако имеются самолёты, у… … Энциклопедия техники

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

Крыло самолёта — У этого термина существуют и другие значения, см. Крыло. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удален … Википедия

Крыло (самолёт) — A319 100 Крыло в авиационной технике поверхность для создания подъёмной силы. Содержание 1 Части крыла самолета … Википедия

Аэродинамика самолёта Боинг 737 — Bóeing 737 (русск. Боинг 737) самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Boeing 737 является самым массовo производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения (6160 машин заказано… … Википедия

Источник

сужение крыла

суже́ние крыла́ — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η

Смотреть что такое «сужение крыла» в других словарях:

Сужение крыла — отношение (о) длины b0 центральной хорды крыла к длине bк концевой хорды: (() = b0/bк Аналогично определяется для любой несущей поверхности. Обычно (.) > 1, в некоторых специальных случаях встречаются несущие поверхности с (,) Энциклопедия техники

Сужение крыла — 39. Сужение крыла η Отношение длины центральной хорды крыла к длине концевой хорды крыла Источник: ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

сужение крыла — сужение крыла — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η … Энциклопедия «Авиация»

ГОСТ 22833-77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения — Терминология ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения оригинал документа: 3. Базовая ось самолета ORXR Прямая, расположенная в базовой плоскости самолета, проходящая через базовую точку… … Словарь-справочник терминов нормативно-технической документации

Горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее часто Г. о. устанавливают в хвостовой части летательного аппарата, однако имеются самолёты, у… … Энциклопедия техники

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

Крыло самолёта — У этого термина существуют и другие значения, см. Крыло. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удален … Википедия

Крыло (самолёт) — A319 100 Крыло в авиационной технике поверхность для создания подъёмной силы. Содержание 1 Части крыла самолета … Википедия

Аэродинамика самолёта Боинг 737 — Bóeing 737 (русск. Боинг 737) самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Boeing 737 является самым массовo производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения (6160 машин заказано… … Википедия

Источник

Что такое сужение крыла

7.1.1. Геометрические параметры несущей поверхности (крыла)

Рис. 7.4. Основные геометрические параметры крыла

ch7 1 1 3

Рис. 7.6. Некоторые формы (серии) профилей:

Рис. 7.7. Геометрическая крутка крыла

Рис. 7.8. Сверхзвуковой пассажирский самолет Ту-144 и его аналог в полете

Так, при проектировании сверхзвукового пассажирского самолета Ту-144 на базе легкого сверхзвукового истребителя МиГ-21 был построен самолет-аналог (рис. 7.8) с крылом сложной формы и профилировки, подобным крылу проектируемого самолета, что позволило не только смоделировать в реальном полете аэродинамику будущего Ту-144, но и решить другие проблемы.
&nbsp&nbsp&nbspЕсли в дополнение к записанным выше условиям геометрического подобия двух крыльев еще и S1 = S2, то крылья одинаковы.
&nbsp&nbsp&nbspСледует отметить, что не только геометрическое подобие агрегатов (частей) различных самолетов определяет аналогию их летных характеристик при одинаковых числах М полета, но также значения тяговооруженности P и удельной нагрузки на крыло p, которые, таким ообразом, также являются критериями при сравнении различных самолетов.

Источник

сужение крыла

суже́ние крыла́ — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η

Смотреть что такое «сужение крыла» в других словарях:

Сужение крыла — отношение (о) длины b0 центральной хорды крыла к длине bк концевой хорды: (() = b0/bк Аналогично определяется для любой несущей поверхности. Обычно (.) > 1, в некоторых специальных случаях встречаются несущие поверхности с (,) Энциклопедия техники

Сужение крыла — 39. Сужение крыла η Отношение длины центральной хорды крыла к длине концевой хорды крыла Источник: ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения … Словарь-справочник терминов нормативно-технической документации

сужение крыла — сужение крыла — отношение η длины b0 центральной хорды крыла к длине bк концевой хорды: η = b0/bк Аналогично определяется для любой несущей поверхности. Обычно η > 1, в некоторых специальных случаях встречаются несущие поверхности с η … Энциклопедия «Авиация»

ГОСТ 22833-77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения — Терминология ГОСТ 22833 77: Характеристики самолета геометрические. Термины, определения и буквенные обозначения оригинал документа: 3. Базовая ось самолета ORXR Прямая, расположенная в базовой плоскости самолета, проходящая через базовую точку… … Словарь-справочник терминов нормативно-технической документации

Горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее часто Г. о. устанавливают в хвостовой части летательного аппарата, однако имеются самолёты, у… … Энциклопедия техники

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

горизонтальное оперение — Рис. 1. Горизонтальные оперения в хвосте и перед крылом самолёта. горизонтальное оперение — горизонтальная аэродинамическая поверхность летательного аппарата, обеспечивающая его продольную устойчивость и продольную управляемость. Наиболее… … Энциклопедия «Авиация»

Крыло самолёта — У этого термина существуют и другие значения, см. Крыло. В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удален … Википедия

Крыло (самолёт) — A319 100 Крыло в авиационной технике поверхность для создания подъёмной силы. Содержание 1 Части крыла самолета … Википедия

Аэродинамика самолёта Боинг 737 — Bóeing 737 (русск. Боинг 737) самый популярный в мире узкофюзеляжный реактивный пассажирский самолёт. Boeing 737 является самым массовo производимым реактивным пассажирским самолётом за всю историю пассажирского авиастроения (6160 машин заказано… … Википедия

Источник

Аэродинамические характеристики крыла самолета

ВСЯКАЯ несущая поверхность, помимо сопротивления, создает еще подъемную силу, обеспечивающую полет летательного аппарата. Единый поток перед крылом разделяется на два неодинаковых потока (рис. 1,а). В верхнем потоке струйки как бы сжимаются, скорость их увеличивается, в нижнем же потоке, наоборот, струйки расширяются и скорость их уменьшается. По закону Бернулли, чем выше скорость, тем меньше давление в струе. Следовательно, над крылом образуется область, давление в которой ниже, чем под крылом.

В зависимости от скорости распределяется и давление по крылу (рис. 1,б). Каждый вектор давления на диаграммах представляет собой силу, которая действует на единицу площади поверхности крыла. Если все эти силы сложить, то получим полную аэродинамическую силу, воздействующую на крыло. Исключением в этом случае будут силы трения, которые по диаграмме распределения давления определить нельзя, так как они направлены по касательной к профилю.

Проекция полной аэродинамической силы на ось, перпендикулярную направлению потока, называется подъемной силой (рис. 2,а). Полную аэродинамическую силу R можно разложить на подъемную силу Y и силу лобового сопротивления X (рис. 2,б.)

Wings aerodinamics 2

Подъемная сила крыла зависит от его геометрических размеров, положения относительно потока, скорости полета модели, плотности воздуха и несущей способности профиля крыла. Эту зависимость принято записывать в виде формулы:

Wings aerodinamics f1

где Cy — коэффициент подъемной силы крыла, учитывающий несущую способность профиля.

Этот коэффициент зависит от формы профиля и угла атаки α — угла между скоростью набегающего воздушного потока и хордой профиля (рис. 2в). Хорда профиля — это условная прямая линия, применяемая для построения профиля, проходящая, как правило, через носик и хвостовик профиля.

Кроме сопротивления трения и формы, в коэффициент Cx входит еще один третий вид сопротивления — индуктивное. Дело в том, что крыло отбрасывает набегающий на него поток воздуха вниз со скоростью Vcp (рис. 7) так, что в итоге он направлен не по скорости v, a по скорости v1. Это явление называется скосом потока. Угол отклонения потока ∆α называется углом скоса потока. Сложив геометрически скорости V и Vcp. получают действительное направление и величину скорости потока v1, обтекающего крыло. Изменение направления скорости вызывает, естественно, и изменение угла атаки

Wings aerodinamics f2

Благодаря скосу потока истинный угол атаки меньше геометрического. Угол скоса потока определяется по формуле

Wings aerodinamics f3

где λ — удлинение крыла.

Удлинение крыла λ определяется как отношение квадрата размаха крыла L к площади крыла Sкр

Wings aerodinamics f4

Размах крыла L определяется как расстояние между двумя плоскостями, параллельными плоскости симметрии и касающимися концов крыла.

Подъемная сила всегда направлена перпендикулярно к потоку, обтекающему крыло. Благодаря скосу потока подъемная сила отклонится назад на угол ∆α и будет перпендикулярна новому направлению скорости V1

Эта подъемная сила называется истинной. Ее можно разложить на две составляющие: перпендикулярную к направлению скорости полета V и параллельную направлению скорости. Эта составляющая, существование которой возможно только при наличии подъемной силы, направлена всегда против движения крыла.

Коэффициент индуктивного сопротивления определяют по формуле

Wings aerodinamics f5

Угол скоса потока и индуктивное сопротивление зависят от формы профиля крыла, удлинения и от угла атаки.

Таким образом, полное лобовое сопротивление крыла конечного размаха состоит из сопротивления формы, сопротивления трения и индуктивного сопротивления (рис. 2в). Соответственно, коэффициент сопротивления крыла выражается формулой

Wings aerodinamics f6

Точка приложения полной аэродинамической силы называется центром давления. Условились считать, что центр давления лежит на хорде крыла. Если характер обтекания правой и левой половины крыла одинаков, центр давления всего крыла лежит в плоскости симметрии. Нарушение геометрической и аэродинамической симметрии крыла вызовет смещение центра давления.

Wings aerodinamics 3

Положение центра давления на хорде зависит от угла атаки и оказывается различным у профилей разной формы. Характер перемещения центра давления вдоль хорды при изменении угла атаки зависит от формы профиля.

В этом отношении профили делятся на три категории. У несимметричных 1,2 и вогнуто-выпуклых 3,4 профилей (рис. 4), у которых средняя линия вогнута, центр давления при увеличении угла атаки перемещается вперед и наиболее переднее положение занимает при α, близких к αкр, В этом случае центр давления находится примерно на расстоянии 25—35% хорды от носика профиля. При уменьшении угла атаки он перемещается назад и при углах атаки, на которых Су становится близким к Су = 0, уходит за пределы крыла.

Wings aerodinamics 4

У симметричных профилей 4, имеющих прямую среднюю линию, центр давления в пределах значительного диапазона углов атаки занимает постоянное положение и находится примерно на расстоянии 25% длины хорды от носика. При углах атаки больших критического, центр давления у них резко уходит назад.

У S-образных профилей 6 отогнута вверх задняя кромка. Если хвостик профиля отогнут мало, то перемещение центра давления такое же, как и у профилей первой категории. Бели хвостик отогнут больше, то профиль будет иметь постоянный центр давления. Если же его отогнуть еще больше, то центр давления при увеличении угла атаки отходит назад.

Перемещение центра давления вызывает изменение момента равнодействующей воздушных сил относительно центра тяжести модели. Для того, чтобы судить об устойчивости крыла данного профиля, необходимо знать, как меняется момент воздушных сил, действующих на крыло, с изменением угла атаки.

Wings aerodinamics 5

На рис. 10 изображен профиль крыла модели. Так как при предварительных расчетах конструкция модели еще неизвестна, и, следовательно, неизвестно положение ее центра тяжести, вращение крыла рассматривают не относительно центра тяжести, а относительно точки А, находящейся на носике профиля. Силу R раскладывают не на Y и X, как это делалось раньше, а на силы Rn и Rt.

Сила Rn мало отличается от Y, поэтому с небольшой ошибкой можно допустить, что Rn = Y. Момент силы Rn относительно точки А равен

Wings aerodinamics f7

где Хс— расстояние от центра давления до точки А.

Так как положение центра давления при разных углах атаки неизвестно, то считают, что крыло вращается силой Rm. приложенной на задней кромке профиля. Для этого необходимо, чтобы

Wings aerodinamics f8

Это равенство может сохраняться при разных углах атаки, так как изменение Y и Хс может соответствовать изменению Rm при постоянном плече b. Величину Rm определяют в аэродинамической трубе из условия равновесия относительно опоры весов. При этом замеряют силу Rm при разных углах атаки. Зная момент, нетрудно подсчитать и коэффициент CmA в формуле

Wings aerodinamics f9

Зависимость коэффициента CmA от угла атаки α представлена на рис. 6.

Wings aerodinamics 6

Значение коэффициентов Сх и Су для различных углов атаки — на рис. 3. Значения коэффициентов Су для различных профилей — на рис. 5. Кривая Су по α для симметричного профиля проходит через начало координат. С увеличением вогнутости профиля кривая зависимости Су по α смещается вверх.

Объединенный график зависимости Су от Сх при различных α называется полярой (рис. 8). Имея поляру, можно определить ряд величин, которые характеризуют крыло. Если провести касательную к поляре, параллельную оси Сх, то в точке касания получают угол атаки, соответствующий Су max (рис. 8). Этот угол называется критическим углом атаки «Крит- При увеличении угла атаки сверх критического нарушается обтекание крыла и подъемная сила уменьшается.

Наивыгоднейшим называется такой угол атаки, при котором отношение коэффициента подъемной силы к коэффициенту лобового сопротивления наибольшее. Чтобы найти этот угол, нужно из начала координат провести касательную к поляре.

Wings aerodinamics 7

Отношение подъемной силы к лобовому сопротивлению называют аэродинамическим качеством крыла.

Wings aerodinamics f10

При полете на угле атаки, имеющем Кmax модель проходит наибольшее расстояние. Для того, чтобы модель продержалась наибольшее время в воздухе, необходимо, чтобы угол атаки был равен экономическому углу.

Угол атаки нулевой подъемной силы α0 лежит на пересечении поляры с осью Сх. При этом угле атаки Су = 0.

Угол атаки, при котором Сх имеет наименьшее значение Сх min находится в точке касания линии к поляре, проведенной параллельно оси Су.

Значения коэффициентов Сх и Су при каком-либо значении угла атаки зависит от числа Re (рис. 9). При Re Reкpит обтекание профиля потоком турбулентное. Благодаря перемешиванию относительная скорость и кинетическая энергия частиц воздуха вблизи профиля более высокая, чем у ламинарного пограничного слоя, и турбулентный пограничный слой может преодолевать повышенное давление на значительном участке задней поверхности профиля. Точка отрыва турбулентного пограничного слоя лежит вблизи задней кромки и тем ближе к ней, чем меньше перепад давления между соседними точками профиля и чем большую скорость имеет внешний поток. Это приводит к росту Су и уменьшению Сх.

Wings aerodinamics 9

Wings aerodinamics 10

Н. ЛЯШЕНКО, руководитель заводского клуба юных техников Харьков

Источник

Мир познаний
Добавить комментарий

Adblock
detector
07 08 s